tumor cell migration
Recently Published Documents


TOTAL DOCUMENTS

531
(FIVE YEARS 139)

H-INDEX

64
(FIVE YEARS 5)

Cancers ◽  
2022 ◽  
Vol 14 (2) ◽  
pp. 430
Author(s):  
Dirk Andreas Ridder ◽  
Lana Louisa Urbansky ◽  
Hagen Roland Witzel ◽  
Mario Schindeldecker ◽  
Arndt Weinmann ◽  
...  

Although knowledge on inflammatory signaling pathways driving cancer initiation and progression has been increasing, molecular mechanisms in hepatocarcinogenesis are still far from being completely understood. Hepatocyte-specific deletion of the MAPKKK Tak1 in mice recapitulates important steps of hepatocellular carcinoma (HCC) development, including the occurrence of cell death, steatohepatitis, dysplastic nodules, and HCCs. However, overactivation of Tak1 in mice upon deletion of its deubiquitinase Cyld also results in steatohepatitis and HCC development. To investigate Tak1 and Cyld in human HCCs, we created a tissue microarray to analyze their expression by immunohistochemistry in a large and well-characterized cohort of 871 HCCs of 561 patients. In the human liver and HCC, Tak1 is predominantly present as its isoform Tak1A and predominantly localizes to cell nuclei. Tak1 is upregulated in diethylnitrosamine-induced mouse HCCs as well as in human HCCs independent of etiology and is further induced in distant metastases. A high nuclear Tak1 expression is associated with short survival and vascular invasion. When we overexpressed Tak1A in Huh7 cells, we observed increased tumor cell migration, whereas overexpression of full-length Tak1 had no significant effect. A combined score of low Cyld and high Tak1 expression was an independent prognostic marker in a multivariate Cox regression model.


2022 ◽  
Author(s):  
Xiuyu Huang ◽  
Miaojuan Qiu ◽  
Tianqi Wang ◽  
Binbin Li ◽  
Shiqiang Zhang ◽  
...  

Abstract Background: Ovarian cancer is the most lethal gynecological cancer which is characterized by extensive peritoneal implantation metastasis and malignant ascites. Despite advances in diagnosis and treatment in recent years, the five-year survival rate is only 25 - 30%. Therefore, developing multifunctional nanomedicine with abilities of promoting apoptosis and inhibiting migration on tumor cells would be a promising strategy to improve the antitumor effect.Methods and results: In this study, we developed a novel ACaT nanomedicine composed of alendronate, calcium ions and cyclin-dependent kinase 7 (CDK7) inhibitor THZ1. With the average size of 164 nm and zeta potential of 12.4 mV, the spherical ACaT nanoparticles were selectively internalized by tumor cells and effectively accumulated in the tumor site. Results of RNA-sequencing and in vitro experiments showed that ACaT promoted tumor cell apoptosis and inhibited tumor cell migration by arresting the cell cycle, increasing ROS and affecting calcium homeostasis. Weekly intraperitoneally administered of ACaT for 8 cycles significantly inhibited the growth of tumor and prolonged the survival of intraperitoneal xenograft mice.Conclusion: In summary, this study presents a new self-assembly nanomedicine with favorable tumor targeting, antitumor activity and good biocompatibility, providing a novel therapeutic strategy for advanced ovarian cancer.


2022 ◽  
Vol 11 ◽  
Author(s):  
Kai-jun Hao ◽  
Xiao Jia ◽  
Wen-ting Dai ◽  
Ze-min Huo ◽  
Hua-qiang Zhang ◽  
...  

BackgroundTriple negative breast cancer (TNBC) is a highly heterogeneous breast cancer subtype with a poor prognosis due to its extremely aggressive nature and lack of effective treatment options. This study aims to summarize the current hotspots of TNBC research and evaluate the TNBC research trends, both qualitatively and quantitatively.MethodsScientific publications of TNBC-related studies from January 1, 2010 to October 17, 2020 were obtained from the Web of Science database. The BICOMB software was used to obtain the high-frequency keywords layout. The gCLUTO was used to produce a biclustering analysis on the binary matrix of word-paper. The co-occurrence and collaboration analysis between authors, countries, institutions, and keywords were performed by VOSviewer software. Keyword burst detection was performed by CiteSpace.ResultsA total of 12,429 articles related to TNBC were identified. During 2010-2020, the most productive country/region and institution in TNBC field was the USA and The University of Texas MD Anderson Cancer Center, respectively. Cancer Research, Journal of Clinical Oncology, and Annals of Oncology were the first three periodicals with maximum publications in TNBC research. Eight research hotspots of TNBC were identified by co-word analysis. In the core hotspots, research on neoadjuvant chemotherapy, paclitaxel therapy, and molecular typing of TNBC is relatively mature. Research on immunotherapy and PARP inhibitor for TNBC is not yet mature but is the current focus of this field. Burst detection of keywords showed that studies on TNBC proteins and receptors, immunotherapy, target, and tumor cell migration showed bursts in recent three years.ConclusionThe current study revealed that TNBC studies are growing. Attention should be paid to the latest hotspots, such as immunotherapy, PARP inhibitors, target, and TNBC proteins and receptors.


2021 ◽  
Vol 23 (1) ◽  
pp. 316
Author(s):  
Guillermo A. Videla-Richardson ◽  
Olivia Morris-Hanon ◽  
Nicolás I. Torres ◽  
Myrian I. Esquivel ◽  
Mariana B. Vera ◽  
...  

Despite recent advances in diagnosis and treatment, glioblastoma (GBM) represents the most common and aggressive brain tumor in the adult population, urging identification of new rational therapeutic targets. Galectins, a family of glycan-binding proteins, are highly expressed in the tumor microenvironment (TME) and delineate prognosis and clinical outcome in patients with GBM. These endogenous lectins play key roles in different hallmarks of cancer by modulating tumor cell proliferation, oncogenic signaling, migration, vascularization and immunity. Additionally, they have emerged as mediators of resistance to different anticancer treatments, including chemotherapy, radiotherapy, immunotherapy, and antiangiogenic therapy. Particularly in GBM, galectins control tumor cell transformation and proliferation, reprogram tumor cell migration and invasion, promote vascularization, modulate cell death pathways, and shape the tumor-immune landscape by targeting myeloid, natural killer (NK), and CD8+ T cell compartments. Here, we discuss the role of galectins, particularly galectin-1, -3, -8, and -9, as emerging glyco-checkpoints that control different mechanisms associated with GBM progression, and discuss possible therapeutic opportunities based on inhibition of galectin-driven circuits, either alone or in combination with other treatment modalities.


2021 ◽  
Vol 11 ◽  
Author(s):  
Qiang Xie ◽  
Shilei Zhao ◽  
Wenzhi Liu ◽  
Yanwei Cui ◽  
Fengzhou Li ◽  
...  

Abnormal expression of the transcription factor Y-box-binding protein-1 (YBX1) is associated with the proliferation, migration, aggressiveness, and stem-like properties of various cancers. These characteristics contribute to the tumorigenesis and metastasis of cancer. We found that the expression levels of Mucin-1 (MUC1) and YBX1 were positively correlated in lung adenocarcinoma cells and lung adenocarcinoma tissue. Our retrospective cohort study of 176 lung adenocarcinoma patients after surgery showed that low expression of both YBX1 and MUC1 was an independent predictor of the prognosis and recurrence of lung adenocarcinoma. In lung adenocarcinoma cells, the silencing/overexpression of YBX1 caused a simultaneous change in MUC1, and MUC1 overexpression partially reversed the decreased tumor cell migration, aggressiveness, and stemness caused by YBX1 silencing. Moreover, chromatin immunoprecipitation (ChIP) and dual-luciferase reporter assays proved that MUC1 was the downstream target of YBX1 and that YBX1 bound to the -1480~-1476 position in the promoter region of MUC1 to regulate its transcription. Furthermore, in mouse xenograft models and a lung cancer metastasis model, MUC1, which is downstream of YBX1, partially reversed the decreased number and size of tumors caused by YBX1 silencing. In conclusion, our findings indicated a novel mechanism by which YBX1 promotes the stemness and metastasis of lung adenocarcinoma by targeting MUC1 and provided a combination approach for diagnosis different from traditional single tumor biomarkers to predict patient prognosis and provide clinical treatment targets.


2021 ◽  
Vol 2021 ◽  
pp. 1-16
Author(s):  
Dandan Li ◽  
Zhi Liu ◽  
Xiaorong Ding ◽  
Zhensheng Qin

Epithelial-mesenchymal transition (EMT) is involved in various tumor processes, including tumorigenesis, tumor cell migration and metastasis, tumor stemness, and therapeutic resistance. Therefore, it is important to identify the genes most associated with EMT and develop them as therapeutic targets. In this work, we first analyzed EMT hallmark gene expression profiles among 10,535 pan-cancer samples from The Cancer Genome Atlas (TCGA) and divided them into EMT high and EMT low groups according to the metagene scores. Then, we identified 12 genes that were most associated with high EMT metagene score ( R > 0.9 ) in 329 colon adenocarcinoma (COAD) patients. Among them, only 4 genes (AEBP1, KCNE4, GFPT2, and FAM26E) had statistically significant differences in prognosis ( P < 0.05 ). Next, we selected AEBP1 as a candidate and showed that AEBP1 mRNA levels and EMT biomarkers strongly coexpressed in 329 COAD samples. In addition, AEBP1 was highly expressed and associated with poor clinical outcomes and prognosis in COAD patients. Finally, to explore whether AEBP1-mediated EMT was related to the tumor microenvironment (TME), we examined AEBP1 expression levels at the single-cell levels. Our results showed that AEBP1 levels were extremely high in tumor-associated fibroblasts, which may induce EMT. AEBP1 expression was also positively correlated with the expression of fibroblast biomarkers and also with EMT metascores, suggesting that AEBP1-mediated EMT may be associated with the stimulation of fibroblast activation. Therefore, AEBP1 may be a promising target for EMT inhibition, which reduces cancer metastasis and drug resistance in COAD patients.


2021 ◽  
Vol 2021 ◽  
pp. 1-14
Author(s):  
Yupeng Wu ◽  
Yu Zhou ◽  
Haiying Gao ◽  
Yajun Wang ◽  
Qingyu Cheng ◽  
...  

Colorectal cancer (CRC) is a highly malignant tumor associated with poor prognosis, yet the molecular mechanisms are not fully understood. In this study, we showed that LYAR, a nucleolar protein, is expressed at a higher level in CRC tissue than in adjacent normal tissue and that LYAR expression is closely associated with distant CRC metastasis. LYAR not only significantly promotes the migration and invasion of CRC cells in vitro, but knockdown (KD) of LYAR in CRC cells also inhibits xenograft tumor metastasis in vivo. Microarray analysis of LYAR KD cells combined with a chromatin immunoprecipitation (ChIP) assay, gene reporter assay, and rescue experiment indicated that FSCN1 (encoding fascin actin-bundling protein 1 (Fascin-1)) serves as a novel key regulator of LYAR-promoted migration and invasion of CRC cells. Knockdown of FSCN1 significantly inhibits subcutaneous tumorigenesis of CRC cells and leads to the downregulation of FASN and SCD, genes encoding key enzymes in fatty acid synthesis. In summary, this study reveals a novel mechanism by which LYAR promotes tumor cell migration and invasion by upregulating FSCN1 expression and affecting fatty acid metabolism in CRC.


2021 ◽  
Vol 12 (12) ◽  
Author(s):  
Yan Ding ◽  
Guiping Wang ◽  
Meixiao Zhan ◽  
Xiaohan Sun ◽  
Yanran Deng ◽  
...  

AbstractMetastasis is an important cause of death from malignant tumors. It is of great significance to explore the molecular mechanism of metastasis for the development of anti-cancer drugs. Here, we find that the Hippo pathway hampers tumor cell metastasis in vivo. Silence of hpo or its downstream wts promotes tumor cell migration in a Yki-dependent manner. Furthermore, we identify that inhibition of the Hippo pathway promotes tumor cell migration through transcriptional activating src42A, a Drosophila homolog of the SRC oncogene. Yki activates src42A transcription through direct binding its intron region. Intriguingly, Src42A further increases Yki transcriptional activity to form a positive feedback loop. Finally, we show that SRC is also a target of YAP and important for YAP to promote the migration of human hepatocellular carcinoma cells. Together, our findings uncover a conserved Yki/YAP-Src42A/SRC positive feedback loop promoting tumor cell migration and provide SRC as a potential therapeutic target for YAP-driven metastatic tumors.


2021 ◽  
Vol 19 (1) ◽  
Author(s):  
Yesi Shi ◽  
Gan Lin ◽  
Huili Zheng ◽  
Dan Mu ◽  
Hu Chen ◽  
...  

Abstract Background Autophagy is a conserved catabolic process, which plays an important role in regulating tumor cell motility and degrading protein aggregates. Chemotherapy-induced autophagy may lead to tumor distant metastasis and even chemo-insensitivity in the therapy of hepatocellular carcinoma (HCC). Therefore, a vast majority of HCC cases do not produce a significant response to monotherapy with autophagy inhibitors. Results In this work, we developed a biomimetic nanoformulation (TH-NP) co-encapsulating Oxaliplatin (OXA)/hydroxychloroquine (HCQ, an autophagy inhibitor) to execute targeted autophagy inhibition, reduce tumor cell migration and invasion in vitro and attenuate metastasis in vivo. The tumor cell-specific ligand TRAIL was bioengineered to be stably expressed on HUVECs and the resultant membrane vesicles were wrapped on OXA/HCQ-loaded PLGA nanocores. Especially, TH-NPs could significantly improve OXA and HCQ effective concentration by approximately 21 and 13 times in tumor tissues compared to the free mixture of HCQ/OXA. Moreover, the tumor-targeting TH-NPs released HCQ alkalized the acidic lysosomes and inhibited the fusion of autophagosomes and lysosomes, leading to effective blockade of autophagic flux. In short, the system largely improved chemotherapeutic performance of OXA on subcutaneous and orthotopic HCC mice models. Importantly, TH-NPs also exhibited the most effective inhibition of tumor metastasis in orthotopic HCCLM3 models, and in the HepG2, Huh-7 or HCCLM3 metastatic mice models. Finally, we illustrated the enhanced metastasis inhibition was attributed to the blockade or reverse of the autophagy-mediated degradation of focal adhesions (FAs) including E-cadherin and paxillin. Conclusions TH-NPs can perform an enhanced chemotherapy and antimetastatic effect, and may represent a promising strategy for HCC therapy in clinics. Graphical Abstract


Sign in / Sign up

Export Citation Format

Share Document