scholarly journals A novel resting form of the trinuclear copper center in the double mutant of a multicopper oxidase, CueO, Cys500Ser/Glu506Ala

2015 ◽  
Vol 149 ◽  
pp. 88-90 ◽  
Author(s):  
Takao Kajikawa ◽  
Ryosuke Sugiyama ◽  
Kunishige Kataoka ◽  
Takeshi Sakurai
2009 ◽  
Vol 284 (21) ◽  
pp. 14405-14413 ◽  
Author(s):  
Kunishige Kataoka ◽  
Ryosuke Sugiyama ◽  
Shun Hirota ◽  
Megumi Inoue ◽  
Kanae Urata ◽  
...  

2019 ◽  
Author(s):  
Evan Gardner ◽  
Caitlyn Cobb ◽  
Jeffery A. Bertke ◽  
Timothy H. Warren

A modular synthesis provides access to a series of new tris(pyrazolyl)borate ligands <sup>XpyMe</sup>TpK that possess a single functionalized pendant pyridyl (py) or pyrimidyl (pyd) arm designed to engage in tunable intramolecular H-bonding to metal–bound functionalities. To illustrate such H-bonding interactions, a series of [<sup>XpyMe</sup>TpCu]<sub>2</sub>(𝜇–OH)<sub>2</sub>(<b>6a</b><b>–6e</b>) complexes were synthesized from the corresponding <sup>XpyMe</sup>TpCu–OAc (<b>5a–5e</b>) complexes. Single crystal X-ray structures of three new dinuclear [<sup>XpyMe</sup>TpCu]<sub>2</sub>(𝜇–OH)<sub>2</sub>complexes reveal H-bonding between the pendant heterocycle and bridging hydroxide ligands while the donor arm engages the copper center in an unusual monomeric <sup>DMAPMe</sup>TpCu–OH complex. Vibrational studies (IR) of each bridging hydroxide complex reveal reduced 𝜈<sub>OH </sub>frequencies that tracks with the H-bond accepting ability of the pendant arm.


2019 ◽  
Author(s):  
Evan Gardner ◽  
Caitlyn Cobb ◽  
Jeffery A. Bertke ◽  
Timothy H. Warren

A modular synthesis provides access to a series of new tris(pyrazolyl)borate ligands <sup>XpyMe</sup>TpK that possess a single functionalized pendant pyridyl (py) or pyrimidyl (pyd) arm designed to engage in tunable intramolecular H-bonding to metal–bound functionalities. To illustrate such H-bonding interactions, a series of [<sup>XpyMe</sup>TpCu]<sub>2</sub>(𝜇–OH)<sub>2</sub>(<b>6a</b><b>–6e</b>) complexes were synthesized from the corresponding <sup>XpyMe</sup>TpCu–OAc (<b>5a–5e</b>) complexes. Single crystal X-ray structures of three new dinuclear [<sup>XpyMe</sup>TpCu]<sub>2</sub>(𝜇–OH)<sub>2</sub>complexes reveal H-bonding between the pendant heterocycle and bridging hydroxide ligands while the donor arm engages the copper center in an unusual monomeric <sup>DMAPMe</sup>TpCu–OH complex. Vibrational studies (IR) of each bridging hydroxide complex reveal reduced 𝜈<sub>OH </sub>frequencies that tracks with the H-bond accepting ability of the pendant arm.


2018 ◽  
Vol 5 (1) ◽  
Author(s):  
Mahyudin Abdul Rachman

Enterobacter aerogenes AY-2 mutant is known for hydrogen gas producer which ws obtained from the sludge of methane fermentation and the yield is 1.5 fold higher than wildtype. Hydrogen gas production can be gain via NADH oxidation in anaerobic metabolic pathway by blocking organic acid production. Metabolic pathway can be changed by mutagenesis. Enterobacter aerogenes AY-2 mutated with ethyl methane sulfonate in logarithmic phase with consentration 10, 11, 12, 13, 14 and 15 μl/ml cell suspention during 120 minute. Mutation that result lowest survival ratio (0,01%) was 14 μl EMS/ml cell suspention is repeated with variation incubation time, 30, 60, 90 and 120 minute. 166 double mutant colony has been collected and choosen randomly. The choosen 43 colony was fermented in glycerol complex medium for determining ten double mutant with the highest H2 production. Double mutant AD-H43 is a highest H2 producer that increase 20% H2 production from AY-2 and has a decrease lactid acid production, 31% less from AY-2. Increasing H2 production in double mutant AD-H43 is caused by lactate dehydrogenase deffi cient.Keywords: Enterobacter aerogenes AY-2, ethyl methane sulfonate (EMS), H2 and methane sludge


2001 ◽  
Vol 199 (1-2) ◽  
pp. 221-222
Author(s):  
A. BEVERDAM ◽  
A. BROUWER ◽  
M. REIJNEN ◽  
J. KORVING ◽  
F. MEIJLINK
Keyword(s):  

Genetics ◽  
2000 ◽  
Vol 155 (4) ◽  
pp. 1757-1772 ◽  
Author(s):  
Scott L Page ◽  
Kim S McKim ◽  
Benjamin Deneen ◽  
Tajia L Van Hook ◽  
R Scott Hawley

Abstract We present the cloning and characterization of mei-P26, a novel P-element-induced exchange-defective female meiotic mutant in Drosophila melanogaster. Meiotic exchange in females homozygous for mei-P261 is reduced in a polar fashion, such that distal chromosomal regions are the most severely affected. Additional alleles generated by duplication of the P element reveal that mei-P26 is also necessary for germline differentiation in both females and males. To further assess the role of mei-P26 in germline differentiation, we tested double mutant combinations of mei-P26 and bag-of-marbles (bam), a gene necessary for the control of germline differentiation and proliferation in both sexes. A null mutation at the bam locus was found to act as a dominant enhancer of mei-P26 in both males and females. Interestingly, meiotic exchange in mei-P261; bamΔ86/+ females is also severely decreased in comparison to mei-P261 homozygotes, indicating that bam affects the meiotic phenotype as well. These data suggest that the pathways controlling germline differentiation and meiotic exchange are related and that factors involved in the mitotic divisions of the germline may regulate meiotic recombination.


2021 ◽  
Vol 22 (14) ◽  
pp. 7285
Author(s):  
Yu Mu ◽  
Birke Andrea Tews ◽  
Christine Luttermann ◽  
Gregor Meyers

Pestiviruses contain three envelope proteins: Erns, E1, and E2. Expression of HA-tagged E1 or mutants thereof showed that E1 forms homodimers and -trimers. C123 and, to a lesser extent, C171, affected the oligomerization of E1 with a double mutant C123S/C171S preventing oligomerization completely. E1 also establishes disulfide linked heterodimers with E2, which are crucial for the recovery of infectious viruses. Co-expression analyses with the HA-tagged E1 wt/E1 mutants and E2 wt/E2 mutants demonstrated that C123 in E1 and C295 in E2 are the critical sites for E1/E2 heterodimer formation. Introduction of mutations preventing E1/E2 heterodimer formation into the full-length infectious clone of BVDV CP7 prevented the recovery of infectious viruses, proving that C123 in E1 and C295 in E2 play an essential role in the BVDV life cycle, and further support the conclusion that heterodimer formation is the crucial step. Interestingly, we found that the retention signal of E1 is mandatory for intracellular localization of the heterodimer, so that absence of the E1 retention signal directs the heterodimer to the cell surface even though the E2 retention signal is still present. The covalent linkage between E1 and E2 plays an essential role for this process.


BMC Genomics ◽  
2021 ◽  
Vol 22 (1) ◽  
Author(s):  
Erika Berenice Martínez-Ruiz ◽  
Myriel Cooper ◽  
Jimena Barrero-Canosa ◽  
Mindia A. S. Haryono ◽  
Irina Bessarab ◽  
...  

Abstract Background Cylindrospermopsin is a highly persistent cyanobacterial secondary metabolite toxic to humans and other living organisms. Strain OF001 and A210 are manganese-oxidizing bacteria (MOB) able to transform cylindrospermopsin during the oxidation of Mn2+. So far, the enzymes involved in manganese oxidation in strain OF001 and A210 are unknown. Therefore, we analyze the genomes of two cylindrospermopsin-transforming MOB, Pseudomonas sp. OF001 and Rubrivivax sp. A210, to identify enzymes that could catalyze the oxidation of Mn2+. We also investigated specific metabolic features related to pollutant degradation and explored the metabolic potential of these two MOB with respect to the role they may play in biotechnological applications and/or in the environment. Results Strain OF001 encodes two multicopper oxidases and one haem peroxidase potentially involved in Mn2+ oxidation, with a high similarity to manganese-oxidizing enzymes described for Pseudomonas putida GB-1 (80, 83 and 42% respectively). Strain A210 encodes one multicopper oxidase potentially involved in Mn2+ oxidation, with a high similarity (59%) to the manganese-oxidizing multicopper oxidase in Leptothrix discophora SS-1. Strain OF001 and A210 have genes that might confer them the ability to remove aromatic compounds via the catechol meta- and ortho-cleavage pathway, respectively. Based on the genomic content, both strains may grow over a wide range of O2 concentrations, including microaerophilic conditions, fix nitrogen, and reduce nitrate and sulfate in an assimilatory fashion. Moreover, the strain A210 encodes genes which may convey the ability to reduce nitrate in a dissimilatory manner, and fix carbon via the Calvin cycle. Both MOB encode CRISPR-Cas systems, several predicted genomic islands, and phage proteins, which likely contribute to their genome plasticity. Conclusions The genomes of Pseudomonas sp. OF001 and Rubrivivax sp. A210 encode sequences with high similarity to already described MCOs which may catalyze manganese oxidation required for cylindrospermopsin transformation. Furthermore, the analysis of the general metabolism of two MOB strains may contribute to a better understanding of the niches of cylindrospermopsin-removing MOB in natural habitats and their implementation in biotechnological applications to treat water.


Sign in / Sign up

Export Citation Format

Share Document