scholarly journals Chemical modification of waste Allium cepa peels to Cu-complex composite and application as eco environmental oilfield anticorrosion additive

Author(s):  
Ekemini Ituen ◽  
Lin Yuanhua ◽  
Ambrish Singh ◽  
Ruiyun Li
2021 ◽  
Vol 3 (6) ◽  
Author(s):  
Ekemini Ituen ◽  
Ambrish Singh ◽  
Lin Yuanhua ◽  
Onyewuchi Akaranta

AbstractAn alternative green approach through which nanoscience/nanotechnology could be applied in the industry is being demonstrated in this study. Ethanol extracts of Allium cepa peels (Et-ACPE) is used to mediate the synthesis of silver nanoparticles (Et-AgNPs) at room temperature. Stable crystalline, monodisperse and non-agglomerated spherical NPs with zeta potential of −46.2 ± 0.1 mV and plasmon absorption at 435 nm are obtained. Silver atoms are predominantly oriented towards the Ag (111) plane in a face centered cubic structure with a = b = c = 4.0968 Å having $$\alpha = \beta = \gamma = 90^\circ$$ α = β = γ = 90 ∘ . The surfaces of the NPs becomes rich in electron cloud due to O atoms supplied by capped phyto-compounds of Et-ACPE. This enhances adsorption potential and more efficient inhibition (up to 90% at 30 °C) of X80 steel corrosion in 1 M HCl solution than using the crude extract. Investigation of corrosion products and morphologies of the steel surface by FTIR, SEM/EDS and AFM techniques reveals efficient surface protection through adsorption of Et-AgNPs facilitated mainly by O and –C = C– sites. Findings prove that the Et-AgNPs is a more efficient and thermally stable alternative ecofriendly anticorrosion additive for industrial cleaning and pickling operations than the crude extract.


2003 ◽  
Vol 16 (1) ◽  
pp. 66-70 ◽  
Author(s):  
Irena Vovk ◽  
Breda Simonovska ◽  
Samo Andrenšek ◽  
Teijo Yrjönen ◽  
Pia Vuorela ◽  
...  

1996 ◽  
Vol 444 ◽  
Author(s):  
H. Okumoto ◽  
M. Shimomura ◽  
N. Minami ◽  
Y. Tanabe

AbstractSilicon-based polymers with σconjugated electrons have specific properties; photoreactivity for microlithography and photoconductivity for hole transport materials. To explore the possibility of combining these two properties to develop photoresists with electronic transport capability, photoconductivity of polysilanes is investigated in connection with their photoinduced chemical modification. Increase in photocurrent is observed accompanying photoreaction of poly(dimethylsilane) vacuum deposited films. This increase is found to be greatly enhanced in oxygen atmosphere. Such changes of photocurrent can be explained by charge transfer to electron acceptors from Si dangling bonds postulated to be formed during photoreaction.


Author(s):  
Anna Campanati ◽  
Emanuela Martina ◽  
Katia Giuliodori ◽  
Giulia Ganzetti ◽  
Barbara Marconi ◽  
...  

Sign in / Sign up

Export Citation Format

Share Document