scholarly journals Green synthesis and anticorrosion effect of Allium cepa peels extract-silver nanoparticles composite in simulated oilfield pickling solution

2021 ◽  
Vol 3 (6) ◽  
Author(s):  
Ekemini Ituen ◽  
Ambrish Singh ◽  
Lin Yuanhua ◽  
Onyewuchi Akaranta

AbstractAn alternative green approach through which nanoscience/nanotechnology could be applied in the industry is being demonstrated in this study. Ethanol extracts of Allium cepa peels (Et-ACPE) is used to mediate the synthesis of silver nanoparticles (Et-AgNPs) at room temperature. Stable crystalline, monodisperse and non-agglomerated spherical NPs with zeta potential of −46.2 ± 0.1 mV and plasmon absorption at 435 nm are obtained. Silver atoms are predominantly oriented towards the Ag (111) plane in a face centered cubic structure with a = b = c = 4.0968 Å having $$\alpha = \beta = \gamma = 90^\circ$$ α = β = γ = 90 ∘ . The surfaces of the NPs becomes rich in electron cloud due to O atoms supplied by capped phyto-compounds of Et-ACPE. This enhances adsorption potential and more efficient inhibition (up to 90% at 30 °C) of X80 steel corrosion in 1 M HCl solution than using the crude extract. Investigation of corrosion products and morphologies of the steel surface by FTIR, SEM/EDS and AFM techniques reveals efficient surface protection through adsorption of Et-AgNPs facilitated mainly by O and –C = C– sites. Findings prove that the Et-AgNPs is a more efficient and thermally stable alternative ecofriendly anticorrosion additive for industrial cleaning and pickling operations than the crude extract.

2019 ◽  
Vol 48 (3) ◽  
pp. 427-436
Author(s):  
T Rajkumar ◽  
Jayanta Kumar Patra

Silver nanoparticles (AgNPs) were synthesized using aqueous leaf extract of Trigonella foenumgraecum as reducing and stabilizing agent. The ultraviolet-visible spectrum showed absorption peak at 480 nm. XRD pattern indicates the formation of face-centered cubic structure of silver nanoparticles. FESEM images indicate the presence of spherical silver nanoparticles with the particle size of ~90 nm. FTIR indicates that the participation of different functional groups present in the biomolecules is responsible for both reducing and stabilizing the formation of nanoparticles. The synthesized AgNPs demonstrated positive antibacterial activity against two different foodborne pathogenic bacteria (Escherichia coli O157:H7 ATCC 35150, Staphylococcus aureus ATCC 13565) with zones of inhibition of 9.20 ± 0.18 and 9.34 ± 0.11, respectively and MIC and MBC of 100 and >100 μg/ml, respectively. The synthesized AgNPs could serve as a candidate for development of antibacterial drugs or additive in the food packaging system for its application in medicine, cosmetics and food sector industries.


2016 ◽  
Vol 2016 ◽  
pp. 1-11 ◽  
Author(s):  
Miftah Faried ◽  
Kamyar Shameli ◽  
Mikio Miyake ◽  
Abdollah Hajalilou ◽  
Ali Zamanian ◽  
...  

The synthesis of silver nanoparticles (Ag-NPs) was achieved by a simple green chemistry procedure using sodium alginate (Na-Alg) under ultrasonic radiation as a stabilizer and physical reducing agent. The effect of radiation time on the synthesis of Ag-NPs was carried out at room temperature until 720 min. The successful formation of Ag-NPs has been confirmed by UV-Vis, XRD, TEM, FESEM-EDX, zeta potential, and FT-IR analyses. The surface plasmon resonance band appeared at the range of 452–465 nm that is an evidence of formation of Ag-NPs. The XRD study showed that the particles are crystalline structure in nature, with a face-centered cubic (fcc) structure. The TEM study showed the Ag-NPs have average diameters of around 20.16–22.38 nm with spherical shape. The FESEM-EDX analysis confirmed the spherical shape of Ag-NPs on the surface of Alg and the element of Ag with the high purity. The zeta potential showed high stability of Alg/Ag-NPs especially after 720 min irradiation with value of −67.56 mV. The FT-IR spectrum confirmed that the Ag-NPs have been capped by the Alg with van der Waals interaction. The Alg/Ag-NPs showed the antibacterial activity against Gram-positive and Gram-negative bacteria. These suggest that Ag-NPs can be employed as an effective bacteria inhibitor and can be applied in medical field.


Biology ◽  
2021 ◽  
Vol 10 (6) ◽  
pp. 473
Author(s):  
Prabu Kumar Seetharaman ◽  
Rajkuberan Chandrasekaran ◽  
Rajiv Periakaruppan ◽  
Sathishkumar Gnanasekar ◽  
Sivaramakrishnan Sivaperumal ◽  
...  

To develop a benign nanomaterial from biogenic sources, we have attempted to formulate and fabricate silver nanoparticles synthesized from the culture filtrate of an endophytic fungus Penicillium oxalicum strain LA-1 (PoAgNPs). The synthesized PoAgNPs were exclusively characterized through UV–vis absorption spectroscopy, Fourier Transform Infra-Red spectroscopy (FT-IR), X-ray powder diffraction (XRD), and Transmission Electron Microscopy (TEM) with energy dispersive X-ray spectroscopy (EDX). The synthesized nanoparticles showed strong absorbance around 430 nm with surface plasmon resonance (SPR) and exhibited a face-centered cubic crystalline nature in XRD analysis. Proteins presented in the culture filtrate acted as reducing, capping, and stabilization agents to form PoAgNPs. TEM analysis revealed the generation of polydispersed spherical PoAgNPs with an average size of 52.26 nm. The PoAgNPs showed excellent antibacterial activity against bacterial pathogens. The PoAgNPs induced a dose-dependent cytotoxic activity against human adenocarcinoma breast cancer cell lines (MDA-MB-231), and apoptotic morphological changes were observed by dual staining. Additionally, PoAgNPs demonstrated better larvicidal activity against the larvae of Culex quinquefasciatus. Moreover, the hemolytic test indicated that the as-synthesized PoAgNPs are a safe and biocompatible nanomaterial with versatile bio-applications.


Materials ◽  
2019 ◽  
Vol 12 (15) ◽  
pp. 2382 ◽  
Author(s):  
Muhammad Jamshed Khan ◽  
Suriya Kumari ◽  
Kamyar Shameli ◽  
Jinap Selamat ◽  
Awis Qurni Sazili

Nanoparticles (NPs) are, frequently, being utilized in multi-dimensional enterprises. Silver nanoparticles (AgNPs) have attracted researchers in the last decade due to their exceptional efficacy at very low volume and stability at higher temperatures. Due to certain limitations of the chemical method of synthesis, AgNPs can be obtained by physical methods including sun rays, microwaves and ultraviolet (UV) radiation. In the current study, the synthesis of pullulan mediated silver nanoparticles (P-AgNPs) was achieved through ultraviolet (UV) irradiation, with a wavelength of 365 nm, for 96 h. P-AgNPs were formed after 24 h of UV-irradiation time and expressed spectra maxima as 415 nm, after 96 h, in UV-vis spectroscopy. The crystallographic structure was “face centered cubic (fcc)” as confirmed by powder X-ray diffraction (PXRD). Furthermore, high resolution transmission electron microscopy (HRTEM) proved that P-AgNPs were covered with a thin layer of pullulan, with a mean crystalline size of 6.02 ± 2.37. The average lattice fringe spacing of nanoparticles was confirmed as 0.235 nm with quasi-spherical characteristics, by selected area electron diffraction (SAED) analysis. These green synthesized P-AgNPs can be utilized efficiently, as an active food and meat preservative, when incorporated into the edible films.


2017 ◽  
Vol 137 ◽  
pp. 18-28 ◽  
Author(s):  
Petra Cvjetko ◽  
Anita Milošić ◽  
Ana-Marija Domijan ◽  
Ivana Vinković Vrček ◽  
Sonja Tolić ◽  
...  

2021 ◽  
Vol 16 (8) ◽  
pp. 38-49
Author(s):  
Siva Kumar Kandula ◽  
Satyanarayana Swamy Cheekatla ◽  
Venkata Satya Mahesh Kumar Metta ◽  
Venkata Rajagopal Saladi

Natural antioxidants, in particular phenolic derivatives, are used efficiently to combat against oxidative induced tissue damages. The objective of the study is to determine the antioxidant potential of methanolic extracts obtained from eight marine algal species (Enteromorpha compressa, Chaetomorpha antennina, Caulerpa racemosa, Caulerpa taxifolia, Sargassum vulgare, Padina tetrastromatica, Amphiroa fragilissima and Gracilaria corticata) by assessing their total phenolic content, DPPH scavenging assay, FRAP assay, H2O2 radical and superoxide radical scavenging activities. Among them, P.tetrastromatica, S.vulgare, E.compressa, C.taxifolia display significant antioxidant activities. Further, the aqueous extracts of these four algae are used for bioreduction of silver nitrate to silver nanoparticles (AgNPs) by green synthesis method at room temperature. UV-Visible spectrum revealed the surface plasmon resonance at 430 and 440nm. The characterizations of AgNPs by Fourier transform infrared spectroscopy (FTIR) and X-ray diffraction (XRD) studies revealed the bioreduction and capping of AgNPs. XRD analysis elucidated the synthesized nanoparticles having face centered cubic crystalline geometry, with a mean size of 17 nm. The nanoparticles have better antimicrobial activity against cocci shaped than the rod shaped bacteria. The minimum inhibitory concentration and minimum bactericidal concentration exhibit more activity against S.aureus and B.cereus rather than E.coli.


Author(s):  
Shyla Marjorie Haqq ◽  
Amit Chattree

  This review is based on the synthesis of silver nanoparticles (AgNPs) using a green approach which is biofabricated from various medicinal plants. AgNPs were prepared from the various parts of the plants such as the flowers, stems, leaves, and fruits. Various physiochemical characterizations were performed using the ultraviolet (UV)-visible spectroscopy, Fourier transform infrared spectroscopy, X-ray diffraction spectroscopy, transmission electron microscopy, and energy dispersive spectroscopy. AgNPs were also used to inhibit the growth of bacterial pathogens and were found to be effective against both the Gram-positive and Gram-negative bacteria. For the silver to have antimicrobial properties, it must be present in the ionized form. All the forms of silver-containing compounds with the observed antimicrobial properties are in one way or another source of silver ions. Although the antimicrobial properties of silver have been known, it is thought that the silver atoms bind to the thiol groups in enzymes and subsequently leads to the deactivation of enzymes. For the silver to have antimicrobial properties, it must be present in the ionized form. The study suggested that the action of the AgNPs on the microbial cells resulted into cell lysis and DNA damage. AgNPs have proved their candidature as a potential antibacterial against the multidrug-resistant microbes. The biological agents for synthesizing AgNPs cover compounds produced naturally in microbes and plants. Reaction parameters under which the AgNPs were being synthesized hold prominent impact on their size, shape, and application. Silver nanoparticle synthesis and their application are summarized and critically discussed in this review.


Molecules ◽  
2020 ◽  
Vol 25 (18) ◽  
pp. 4332
Author(s):  
Nurul Izzati Zulkifli ◽  
Musthahimah Muhamad ◽  
Nur Nadhirah Mohamad Zain ◽  
Wen-Nee Tan ◽  
Noorfatimah Yahaya ◽  
...  

A bottom-up approach for synthesizing silver nanoparticles (AgNPs-GA) phytomediated by Garcinia atroviridis leaf extract is described. Under optimized conditions, the AgNPs-GA were synthesized at a concentration of 0.1 M silver salt and 10% (w/v) leaf extract, 1:4 mixing ratio of reactants, pH 3, temperature 32 °C and 72 h reaction time. The AgNPs-GA were characterized by various analytical techniques and their size was determined to be 5–30 nm. FTIR spectroscopy indicates the role of phenolic functional groups in the reduction of silver ions into AgNPs-GA and in supporting their subsequent stability. The UV-Visible spectrum showed an absorption peak at 450 nm which reflects the surface plasmon resonance (SPR) of AgNPs-GA and further supports the stability of these biosynthesized nanoparticles. SEM, TEM and XRD diffractogram analyses indicate that AgNPs-GA were spherical and face-centered-cubic in shape. This study also describes the efficacy of biosynthesized AgNPs-GA as anti-proliferative agent against human breast cancer cell lines, MCF-7 and MCF-7/TAMR-1. Our findings indicate that AgNPs-GA possess significant anti-proliferative effects against both the MCF-7 and MCF-7/TAMR-1 cell lines, with inhibitory concentration at 50% (IC50 values) of 2.0 and 34.0 µg/mL, respectively, after 72 h of treatment. An induction of apoptosis was evidenced by flow cytometry using Annexin V-FITC and propidium iodide staining. Therefore, AgNPs-GA exhibited its anti-proliferative activity via apoptosis on MCF-7 and MCF-7/TAMR-1 breast cancer cells in vitro. Taken together, the leaf extract from Garcinia atroviridis was found to be highly capable of producing AgNPs-GA with favourable physicochemical and biological properties.


Sign in / Sign up

Export Citation Format

Share Document