Formalization of functional variation in HOL Light

Author(s):  
Jingzhi Zhang ◽  
Guohui Wang ◽  
Zhiping Shi ◽  
Yong Guan ◽  
Yongdong Li
Author(s):  
Martin Haspelmath

This book examines the connections between the formal and functional (semantic and syntactic) properties of indefinite pronouns. It considers the main theoretical debates surrounding the semantic and syntactic properties of indefinite pronouns as well as the diachronic sources of the markers of indefinite pronouns. It describes the new generalizations that emerge from the typological and diachronic research and provides explanations. It also outlines the goals and methods of the typological approach, focusing on the important preconditions for typology such as the availability of data from a variety of languages. Other topics covered by the book include the space of formal and functional variation found in indefinite pronouns, implicational universals, theoretical approaches to the functions of indefinite pronouns such as the tradition of structuralist semantics, the grammaticalization of indefinite pronouns, further sources of indefinite pronouns that cannot be easily subsumed under grammaticalization, and the cross-linguistic patterning of negative indefinite pronouns.


In the large body of literature on ecological and evolutionary mechanisms underlying transitions between planktotrophy and lecithotrophy, the focus has typically covered long evolutionary timescales; that is, evolution of complex larval traits is generally discussed in the context of phylogenetic patterns detectable at the level of families, classes, or phyla. An analytical approach incorporating comparative phylogenetics is increasingly used to address these long-view questions. Here, we discuss what has been learned from taking a comparative phylogenetic approach and the limitations of this approach. We propose that approaches based on a closer view—that is, analyses that focus on genetic, morphological, and functional variation among individuals, populations, or closely related congeners—have greater potential to answer questions about mechanisms underlying the loss and regain of major complex characters such as feeding larvae.


Genetics ◽  
2002 ◽  
Vol 160 (2) ◽  
pp. 595-608 ◽  
Author(s):  
Jody Hey ◽  
Richard M Kliman

AbstractIn Drosophila, as in many organisms, natural selection leads to high levels of codon bias in genes that are highly expressed. Thus codon bias is an indicator of the intensity of one kind of selection that is experienced by genes and can be used to assess the impact of other genomic factors on natural selection. Among 13,000 genes in the Drosophila genome, codon bias has a slight positive, and strongly significant, association with recombination—as expected if recombination allows natural selection to act more efficiently when multiple linked sites segregate functional variation. The same reasoning leads to the expectation that the efficiency of selection, and thus average codon bias, should decline with gene density. However, this prediction is not confirmed. Levels of codon bias and gene expression are highest for those genes in an intermediate range of gene density, a pattern that may be the result of a tradeoff between the advantages for gene expression of close gene spacing and disadvantages arising from regulatory conflicts among tightly packed genes. These factors appear to overlay the more subtle effect of linkage among selected sites that gives rise to the association between recombination rate and codon bias.


2021 ◽  
Vol 8 (1) ◽  
Author(s):  
Shan-Shan Zhou ◽  
Xue-Mei Yan ◽  
Kai-Fu Zhang ◽  
Hui Liu ◽  
Jie Xu ◽  
...  

AbstractLTR retrotransposons (LTR-RTs) are ubiquitous and represent the dominant repeat element in plant genomes, playing important roles in functional variation, genome plasticity and evolution. With the advent of new sequencing technologies, a growing number of whole-genome sequences have been made publicly available, making it possible to carry out systematic analyses of LTR-RTs. However, a comprehensive and unified annotation of LTR-RTs in plant groups is still lacking. Here, we constructed a plant intact LTR-RTs dataset, which is designed to classify and annotate intact LTR-RTs with a standardized procedure. The dataset currently comprises a total of 2,593,685 intact LTR-RTs from genomes of 300 plant species representing 93 families of 46 orders. The dataset is accompanied by sequence, diverse structural and functional annotation, age determination and classification information associated with the LTR-RTs. This dataset will contribute valuable resources for investigating the evolutionary dynamics and functional implications of LTR-RTs in plant genomes.


2021 ◽  
Vol 11 (1) ◽  
Author(s):  
Dora Henriques ◽  
Ana R. Lopes ◽  
Nor Chejanovsky ◽  
Anne Dalmon ◽  
Mariano Higes ◽  
...  

AbstractWith a growing number of parasites and pathogens experiencing large-scale range expansions, monitoring diversity in immune genes of host populations has never been so important because it can inform on the adaptive potential to resist the invaders. Population surveys of immune genes are becoming common in many organisms, yet they are missing in the honey bee (Apis mellifera L.), a key managed pollinator species that has been severely affected by biological invasions. To fill the gap, here we identified single nucleotide polymorphisms (SNPs) in a wide range of honey bee immune genes and developed a medium-density assay targeting a subset of these genes. Using a discovery panel of 123 whole-genomes, representing seven A. mellifera subspecies and three evolutionary lineages, 180 immune genes were scanned for SNPs in exons, introns (< 4 bp from exons), 3’ and 5´UTR, and < 1 kb upstream of the transcription start site. After application of multiple filtering criteria and validation, the final medium-density assay combines 91 quality-proved functional SNPs marking 89 innate immune genes and these can be readily typed using the high-sample-throughput iPLEX MassARRAY system. This medium-density-SNP assay was applied to 156 samples from four countries and the admixture analysis clustered the samples according to their lineage and subspecies, suggesting that honey bee ancestry can be delineated from functional variation. In addition to allowing analysis of immunogenetic variation, this newly-developed SNP assay can be used for inferring genetic structure and admixture in the honey bee.


2012 ◽  
Vol 206 (4) ◽  
pp. 495-503 ◽  
Author(s):  
Jie Zhou ◽  
Kelvin Kai-Wang To ◽  
Hui Dong ◽  
Zhong-Shan Cheng ◽  
Candy Choi-Yi Lau ◽  
...  

Language ◽  
1961 ◽  
Vol 37 (1) ◽  
pp. 163
Author(s):  
Paul W. Friedrich ◽  
Charles A. Ferguson ◽  
John J. Gumperz

2012 ◽  
Vol 60 (2) ◽  
pp. 101 ◽  
Author(s):  
Thomas E. White ◽  
Joseph Macedonia ◽  
Debra Birch ◽  
Judith Dawes ◽  
Darrell J. Kemp

Structurally generated colours are at least as commonplace and varied components of animal signals as pigment colours, yet we know far less about the former, both in terms of the patterns and phenotypic variation and of their underlying correlates and causes. Many butterflies exhibit bright and iridescent colour signals that arise from a characteristic ‘ridge-lamellar’ scale surface nanoarchitecture. Although there are multiple axes of functional variation in these traits, few have been investigated. Here we present evidence that sexual dimorphism in the expression of a sexually homologous ridge-lamellar trait (iridescent ultraviolet) is mediated by sex differences in the density of lamellar-bearing scale ridges. This trait – ridge density – has also been causally related to iridescent signal variation in other coliadines (e.g. C. eurytheme), which suggests that it may offer a common basis to both intra- and intersexual differences in ultraviolet wing reflectance among these butterflies.


Sign in / Sign up

Export Citation Format

Share Document