Numerical study of influence of initial pressures and temperatures on the lower flammability limits of oxygenated fuels in air

2016 ◽  
Vol 41 ◽  
pp. 40-47 ◽  
Author(s):  
Xin Wan ◽  
Qi Zhang
2011 ◽  
Vol 110-116 ◽  
pp. 4899-4906
Author(s):  
Hsin Yi Shih ◽  
Jou Rong Hsu

This paper reports a numerical study on the extinction limits and flame structures of opposed-jet syngas diffusion flames. A narrowband radiation model is coupled to the OPPDIF program, which uses detailed chemical kinetics and thermal and transport properties to enable the study of 1-D counterflow syngas diffusion flames over the entire range of flammable strain rates with flame radiation. The effects of syngas composition, strain rate, ambient pressure, and dilution gases on the flame structures and extinction limits of H2/CO synthetic mixture flames were examined. Results indicate the flame structures and flame extinction are impacted by the composition of syngas mixture significantly. From hydrogen-lean syngas to hydrogen-rich syngas fuels, flame temperature increases with increasing hydrogen content and ambient pressure, but the flame thickness is decreased with ambient pressure and strain rates. Besides, the dilution effects from CO2, N2, and H2O, which may be present in the syngas mixtures, were studied. The flame is thinner and flame temperature is lower when CO2 is the diluents instead of N2. The combustible range of strain rates is extended with increasing hydrogen percentage and ambient pressure, but it is decreased the most with CO2 as the dilution gas due to the dilution effects. Complete flammability limits using strain rates, maximum flame temperature as coordinates can provide a fundamental understanding of syngas combustion and applications.


2000 ◽  
Vol 21 (1-3) ◽  
pp. 117-123 ◽  
Author(s):  
L di Mare ◽  
T.A Mihalik ◽  
G Continillo ◽  
J.H.S Lee

1998 ◽  
Vol 77 (2) ◽  
pp. 473-484 ◽  
Author(s):  
M. Sampoli, P. Benassi, R. Dell'Anna,

2020 ◽  
pp. 57-65
Author(s):  
Eusébio Conceiçã ◽  
João Gomes ◽  
Maria Manuela Lúcio ◽  
Jorge Raposo ◽  
Domingos Xavier Viegas ◽  
...  

This paper refers to a numerical study of the hypo-thermal behaviour of a pine tree in a forest fire environment. The pine tree thermal response numerical model is based on energy balance integral equations for the tree elements and mass balance integral equation for the water in the tree. The simulation performed considers the heat conduction through the tree elements, heat exchanges by convection between the external tree surfaces and the environment, heat exchanges by radiation between the flame and the external tree surfaces and water heat loss by evaporation from the tree to the environment. The virtual three-dimensional tree model has a height of 7.5 m and is constituted by 8863 cylindrical elements representative of its trunks, branches and leaves. The fire front has 10 m long and a 2 m high. The study was conducted taking into account that the pine tree is located 5, 10 or 15 m from the fire front. For these three analyzed distances, the numerical results obtained regarding to the distribution of the view factors, mean radiant temperature and surface temperatures of the pine tree are presented. As main conclusion, it can be stated that the values of the view factor, MRT and surface temperatures of the pine tree decrease with increasing distance from the pine tree in front of fire.


2013 ◽  
Author(s):  
Pancheewa Benjamasutin ◽  
◽  
Ponthong Rijana ◽  
Phongchayont Srisuwan ◽  
Aussadavut Dumrongsiri

2013 ◽  
Author(s):  
Artchapong Hassametto ◽  
Preerawadee Chaiboontun ◽  
Chattraporn Prajuabwan ◽  
Laphatrada Khammuang ◽  
Aussadavut Dumrongsiri

Sign in / Sign up

Export Citation Format

Share Document