Effects of the environmental temperature and heat dissipation condition on the thermal runaway of lithium ion batteries during the charge-discharge process

2017 ◽  
Vol 49 ◽  
pp. 953-960 ◽  
Author(s):  
L.S. Guo ◽  
Z.R. Wang ◽  
J.H. Wang ◽  
Q.K. Luo ◽  
J.J. Liu
Nanoscale ◽  
2014 ◽  
Vol 6 (6) ◽  
pp. 3138-3142 ◽  
Author(s):  
Huachao Tao ◽  
Li-Zhen Fan ◽  
Wei-Li Song ◽  
Mao Wu ◽  
Xinbo He ◽  
...  

Hollow core–shell structured Si/C nanocomposites were prepared to adapt for the large volume change during a charge–discharge process.


2017 ◽  
Vol 5 (24) ◽  
pp. 12096-12102 ◽  
Author(s):  
Yong Yang ◽  
Shitong Wang ◽  
Mingchuan Luo ◽  
Wei Wang ◽  
Fan Lv ◽  
...  

Ti-based materials are well-known to be good anode materials for lithium ion batteries because of their negligible volume change during the charge/discharge process.


Author(s):  
Muhammad Sheikh ◽  
David Baglee ◽  
Michael Knowles ◽  
Ahmed Elmarakbi ◽  
Mohammad Al-Hariri

Electric Vehicle (EV) battery manufactures are under pressure to ensure their products are safe and not prone to undetectable heat after an impact, which could lead to thermal runaway. Constant monitoring of the battery’s behaviour and, in particular, heat generation is therefore important for the safety of the vehicle and the occupant. An aim of this research is to use a series of battery models to study the charge/discharge and thermal behaviour of EV lithium ion batteries under normal and damaged conditions through modelling and physical/electrical testing. An equivalent circuit model is identified and tested to determine the electrical behaviour of the batteries and a 2 degree of freedom (DOF) model is discussed for the plastic deformational behaviour of the battery compartment as the result of an impact. The ultimate goal of this work is to develop a new model integrating physical, chemical, thermal and electrical behaviour to improve safety.


2019 ◽  
Vol 21 (41) ◽  
pp. 22740-22755 ◽  
Author(s):  
Mei-Chin Pang ◽  
Yucang Hao ◽  
Monica Marinescu ◽  
Huizhi Wang ◽  
Mu Chen ◽  
...  

Solid-state lithium batteries could reduce the safety concern due to thermal runaway while improving the gravimetric and volumetric energy density beyond the existing practical limits of lithium-ion batteries.


2006 ◽  
Vol 972 ◽  
Author(s):  
Haiming Xie ◽  
Haiying Yu ◽  
Abraham F. Jalbout ◽  
Guiling Yang ◽  
Xiumei Pan ◽  
...  

AbstractWe design a way that the anode hosts provide lithium ion in lithium ion battery operation. If the limiting factors of the cathode materials are less, there will be more alternatives for it. It was proven to be successful by two kinds of test cells based on LixCn as anode material, and β-FeOOH or Cr8O21 as cathode materials. Their theoretical capacities are much higher than those present electrode materials. Unlike the lithium secondary batteries with lithium metal foil or lithium alloy as anode, this type of lithium ion batteries with LixCn as anode prohibit dendrite formation during charging-discharge process. The idea of lithium ion sources coming from the anode can come true successfully as a result that steady protecting solution be sought for LixCn.


2016 ◽  
Vol 18 (6) ◽  
pp. 4721-4727 ◽  
Author(s):  
Bo Lu ◽  
Yicheng Song ◽  
Qinglin Zhang ◽  
Jie Pan ◽  
Yang-Tse Cheng ◽  
...  

The crucial role of mechanical stress in voltage hysteresis of lithium ion batteries in charge–discharge cycles is investigated theoretically and experimentally.


2022 ◽  
Vol 45 ◽  
pp. 103767
Author(s):  
Zhirong Wang ◽  
Shichen Chen ◽  
Xinrui He ◽  
Chao Wang ◽  
Dan Zhao

Sign in / Sign up

Export Citation Format

Share Document