A New Homogeneous Non-Equilibrium Model to Compute Vapor-Liquid Two-Phase Critical Pressure Ratios of Multicomponent Hydrocarbon Mixtures

2020 ◽  
Vol 68 ◽  
pp. 104338
Author(s):  
Wenlong Jia ◽  
Jiuqing Ban ◽  
Fangjian Liang ◽  
Tingting Cheng ◽  
Yufa He ◽  
...  
2021 ◽  
Vol 372 ◽  
pp. 110998
Author(s):  
Hong Xu ◽  
Aurelian Florin Badea ◽  
Xu Cheng

Author(s):  
A. E. Bergles ◽  
J. T. Kelly

This paper summarizes an experimental investigation of steam-water critical flow in heated tubes. A wide range of data was taken for water at pressures below 100 lbf/in2 (abs.) in tubes of small diameter. It is demonstrated that critical flow conditions can occur in subcooled boiling at low exit subcoolings. At equilibrium qualities below about 0·04, the data differ significantly from adiabatic data for a similar exit geometry. The deviations can be explained in terms of the additional non-equilibrium effects present in heated flows. For higher qualities, the diabatic data are in good agreement with adiabatic data, and can be approximately predicted by a slip equilibrium model.


Author(s):  
Moon-Sun Chung ◽  
Sung-Jae Yi ◽  
Keun-Shik Chang

An accurate prediction of a critical flow discharged from a pressurized pipe system is of most importance in such a safety analysis of nuclear power plants, since it provides the transient boundary conditions during the depressurization transients initiated by a pipe break in primary or secondary systems and during the over-pressurization transients resulting in a relief of coolant through valves. Mass and energy discharge through the opening of pressure boundary affects the system thermal hydraulic responses, that is, phase changes and flow distribution in the system, and the mass inventory remaining in the system necessary to remove core decay heat of a nuclear reactor. Therefore, the safety significance relating to the critical flow led to a development of various empirical and mechanistic critical flow models. However, the accuracies of these models are still in question especially during two-phase critical flow condition. A good example of that is a homogeneous equilibrium model (HEM). The HEM is the basis of several system codes, such as early versions of RELAP, for nuclear loss-of-coolant accident (LOCA). The major non-equilibrium phenomena that are ignored in the HEM are vapor bubble nucleation and interface heat, mass, and momentum transfer. Henry-Fauske empirically handled non-equilibrium vapor generation by introducing a non-equilibrium parameter that allows only a fraction of the equilibrium vapor generation to occur. This approach boils down in essence to a correlation of the deviation between the measured flow rate and the prediction from the HEM: The details of the flow path do not have to be worked out and only needs to know the upstream conditions. However, if we treat non-equilibrium phenomena with this model, it requires an empirical database of the non-equilibrium parameters or their correlations that are so far unknown. Further, because the coefficients are not applied separately to the subcooled liquid and two-phase mixture, we have not been able to treat the non-equilibrium phenomena with the phase change properly. For this reason, we propose the non-equilibrium parameters for subcooled liquid and two-phase mixture, respectively, and then we adopt their combinations according to the flow conditions through the phase change process using the RELAP5/MOD3 code. In addition, we discuss the assessment results of Marviken LBLOCA tests using these non-equilibrium parameter sets with those from the non-equilibrium model by Trapp-Ransom and Chung et al.


2017 ◽  
Author(s):  
Linh Do Duc ◽  
Vladimír Horák ◽  
Vladimir Kulish ◽  
Tomáš Lukáč

Author(s):  
Ruixue Li ◽  
Huazhou Andy Li

Multiphase isenthalpic flash calculations are often required in compositional simulations of steam-based enhanced oil recovery methods. These flash calculations are challenging in the narrow-boiling regions and in the determination of the correct number of existing phases. Based on the free-water assumption that the aqueous phase is pure water, a robust and efficient algorithm is proposed to perform isenthalpic three-phase flash calculations in this work. Multiphase equilibria can be considered by this algorithm, including single-phase equilibria, two-phase equilibria, and three-phase vapor-liquid-aqueous equilibria. Isenthalpic flash is a type of flash calculation conducted at given pressure and enthalpy for a feed mixture. In the proposed algorithm, assuming the feed is stable, the temperature is first determined by solving the energy conservation equation. Then the stability test on the feed mixture is conducted at the calculated temperature and the given pressure. If the mixture is found unstable, the two-phase and three-phase vapor-liquid-aqueous isenthalpic flash calculations can be simultaneously initiated without resorting to stability tests. To achieve simultaneous flashes, the outer loop is used to update the temperature by solving the energy conservation equation. The inner loop is used to obtain phase fractions and compositions by performing a three-phase free-water isothermal flash. Note that a two-phase isothermal flash will be initiated if an open feasible region in the phase fractions appears in any iteration during the three-phase isothermal flash or any of the ultimately calculated phase fractions from the three-phase flash do not belong to [0,1]. Negative flash is allowed in the three-phase free-water isothermal flash. A number of example calculations for water/hydrocarbon mixtures are carried out to test the robustness of the proposed algorithm. At low to medium pressures, a good agreement can be achieved between the results obtained by this algorithm and those obtained by the conventional algorithm. This algorithm performs well for the narrow-boiling regions, for example, the three-phase vapor-liquid-aqueous equilibrium region encountered for the water/hydrocarbon mixtures. During the iteration, the new algorithm can readily handle the appearance and disappearance of phases in the inner loop as temperature updates in the outer loop. The number of stability tests involved in the new algorithm is significantly reduced, helping to boost its computational efficiency.


Sign in / Sign up

Export Citation Format

Share Document