Analysis of machined surface quality in a single-pass of ball-end milling on Inconel 718

2012 ◽  
Vol 14 (3) ◽  
pp. 257-268 ◽  
Author(s):  
Harshad A. Sonawane ◽  
Suhas S. Joshi
Author(s):  
Nandkumar N Bhopale ◽  
Raju S Pawade ◽  
Suhas S Joshi

The ball end milling process is commonly used for generating complex three-dimensional sculptured surfaces with definite curvature. In such cases, variation of surface properties along with the machined surface is not well understood. Therefore, this article investigates the effect of machining parameters on the quality of surface in ball end milling of thin-shaped cantilever of Inconel 718. A distinct variation is also observed in the measured values of deflection of workpiece: surface roughness and surface damage in different regions, that is, fixed end, mid portion and free end of machined surface. The experiments were conducted according to the central composite design with four factors, namely, cutting speed, feed, workpiece thickness and workpiece inclination with tool path orientation. It is observed that the process parameters have statistically significant effect on machined surface of Inconel 718. Horizontal tool path condition during milling is most favourable in all aspects of surface quality with high speed and lower feed. The surface roughness values at the fixed end of plate are less as compared with that of mid portion and free end sides. Scanning electron microscope images show various defects such as side flow, smeared layer, microparticle, grooves and feed marks.


2014 ◽  
Author(s):  
Nandkumar N. Bhopale ◽  
Raju S. Pawade

The paper presents the surface integrity analysis in ball end milling of thin shaped cantilever plate of Inconel 718. It is noticed that the workpiece deflection has significantly contributed to machined surface integrity in terms of surface topography and subsurface microhardness. The ball end milling performed with 15° workpiece inclination with horizontal tool path produced higher surface integrity which varies with the location of machined surface region. In general, the mid portion of the machined plate shows lower surface roughness and microhardness with less surface defects.


2010 ◽  
Vol 443 ◽  
pp. 353-358 ◽  
Author(s):  
Harshad A. Sonawane ◽  
Suhas S. Joshi

The ball end milling process, commonly used for generating complex shapes, involves continuous variation in the uncut chip dimensions, which depends on the cutter geometry and the machining parameters. The proposed analytical model evaluates the undeformed and the deformed chip dimensions including chip length, width and thickness. The undeformed and deformed chip dimensions, is a function of cutter rotation angle, instantaneous cutter radius, helix angle, and other processing parameters. The surface quality, in the form of surface roughness, during high-speed ball end milling of Inconel 718 is also analysed in this paper.


2014 ◽  
Vol 657 ◽  
pp. 53-57 ◽  
Author(s):  
Sándor Ravai Nagy ◽  
Ioan Paşca ◽  
Mircea Lobonțiu ◽  
Mihai Banica

Machining of Complex Concave or Convex Surfaces Requires the Use of Ball End Milling Cutters. Obtaining the Expected Surface Quality Compete Various Technological Factors which should be Taken into Account. Following the Machining of the Surface with Different Inclination Angles between the Cutting Tool Axes and the Machined Surface, Significant Changes of the Surface Roughness have been Observed. Based on the Tests Performed, we can Determine the Range of the Tool Inclination Angle, which is the Best for the Surface Quality. we have also Made a Correlation between the Cutting Speeds, Inclination Angle of the Cutting Tool Toward the Machined Surface for an Obtained Surface Quality. the Presented Results are Based on Experimental Research in Industrial Conditions by Using CNC Machine Tools with 5 Axes. the Tests have been Performed on the C45 Material, Heat Treated to 34HRC.


2009 ◽  
Vol 69-70 ◽  
pp. 471-475 ◽  
Author(s):  
Shi Guo Han ◽  
Jun Zhao ◽  
Xiao Feng Zhang

In five-axis high speed milling of freeform surface with ball-end cutters, unwanted machining results are usually introduced by some error effects. Hence precise modeling and simulation of milled sculptured surfaces topography and roughness is the key to obtain optimal process parameters, satisfactory surface quality and high machining efficiency. In this paper, a predictive model for sculptured surface topography and roughness of ball-end milling is developed. Firstly, a mathematical model including both the relative motion of the cutter-workpiece couple and some influential factors on machined surface quality such as the tool runout, tool deflection and tool wear is proposed, and subsequently the analytical form of the tool swept envelope is derived by means of homogeneous coordinate transformation. Then the minimal z-values of the corresponding points lied in discrete cutting edges model and Z-map workpiece model are used to update the workpiece surface topography and to calculate 3D surface roughness. Finally, the simulation algorithm is realized with Matlab software. A series of machining tests on 3Cr2MoNi steel are conducted to validate the model, and the machined surface topography is found in good accordance with the simulation result.


Sign in / Sign up

Export Citation Format

Share Document