Impact assessment of advanced coupling features in a tide–surge–wave model, POLCOMS-WAM, in a shallow water application

2011 ◽  
Vol 87 (1) ◽  
pp. 13-24 ◽  
Author(s):  
Jennifer M. Brown ◽  
Rodolfo Bolaños ◽  
Judith Wolf
1989 ◽  
Vol 94 (C6) ◽  
pp. 8111 ◽  
Author(s):  
Luigi Cavaleri ◽  
Luciana Bertotti ◽  
Piero Lionello

2020 ◽  
pp. 2150138
Author(s):  
Hajar F. Ismael ◽  
Aly Seadawy ◽  
Hasan Bulut

In this paper, we consider the shallow water wave model in the (2+1)-dimensions. The Hirota simple method is applied to construct the new dynamics one-, two-, three-, [Formula: see text]-soliton solutions, complex multi-soliton, fusion, and breather solutions. By using the quadratic function, the one-lump, mixed kink-lump and periodic lump solutions to the model are obtained. The Hirota bilinear form variable of this model is derived at first via logarithmic variable transform. The physical phenomena to this model are explored. The obtained results verify the proposed model.


Author(s):  
Hans Fabricius Hansen ◽  
Stefan Carstensen ◽  
Erik Damgaard Christensen ◽  
Jens Kirkegaard

A numerical package for simulating vessel motions in the time domain, WAMSIM, is extended to handle multiple moving bodies interconnected through a nonlinear mooring system. WAMSIM relies on the industry standard program WAMIT to calculate the hydrodynamic characteristics and interaction of multiple bodies in the frequency domain. The numerical code is used to simulate the motions and mooring line and fender forces of two LNG tankers moored side-by-side in shallow water. One of the gas tankers is moored to the sea floor through a turret with chain catenaries. Realistic short-crested irregular waves obtained from a Boussinesq wave model are used to force the model. Motion spectra of the simulated motions are compared to measured motions from physical scale model tests. The model shows good agreement with measured motions and mooring line forces.


2020 ◽  
Vol 8 (3) ◽  
pp. 196
Author(s):  
Haixiao Jing ◽  
Yanyan Gao ◽  
Changgen Liu ◽  
Jingming Hou

Understanding the propagation of landslide-generated water waves is of great help against tsunami hazards. In order to investigate the effects of landslide shapes on the far-field leading wave generated by a submerged landslide at a constant depth, three linear wave models with different degrees of dispersive properties are employed in this study. The linear fully dispersive model is then validated by comparing the results against the experimental data available for landslides with a low Froude number. Three simplified shapes of landslides with the same volume, which are unnatural for a body of incoherent material, are used to investigate the effects of landslide shapes on the far-field properties of the generated leading wave over a flat seabed. The results show that the far-field leading crest over a constant depth is independent of the exact landslide shape and is invalid at a shallow water depth. Therefore, the most popular non-dispersive model (also called the shallow water wave model) cannot be used to reproduce the phenomenon. The weakly dispersive wave model can predict this phenomenon well. If only the leading wave is considered, this model is accurate up to at least μ = h0/Lc = 0.6, where h0 is the water depth and Lc denotes the characteristic length of the landslide.


1988 ◽  
Vol 1 (21) ◽  
pp. 69 ◽  
Author(s):  
Donald T. Resio

A steady-state spectral model is presented. This model produces a solution equivalent to a full time-stepping spectral model, but at much reduced computational times. Comparisons shown here demonstrate that the spectral model provides a good representation of shallow-water wave propagation phenomena and that wind effects can significantly influence near-coast wave conditions.


Sign in / Sign up

Export Citation Format

Share Document