scholarly journals Scaling behavior of different shapes of hysteresis loops and recoverable energy storage density in Na0.5Bi0.5TiO3, K0.5Bi0.5TiO3, and Na0.25K0.25Bi0.5TiO3 ferroelectrics

Author(s):  
Krishnarjun Banerjee ◽  
Saket Asthana
2020 ◽  
Vol 8 (2) ◽  
pp. 591-601 ◽  
Author(s):  
Di Hu ◽  
Zhongbin Pan ◽  
Xiang Zhang ◽  
Haoran Ye ◽  
Zhouyang He ◽  
...  

The 0.65(NBT-BKT)–0.35SBT ceramic possesses an ultra-high recoverable energy storage density (Wrec ∼ 4.06 J cm−3) and maintains a relatively high efficiency (η = ∼87.3%).


2010 ◽  
Vol 654-656 ◽  
pp. 2045-2048 ◽  
Author(s):  
Yi Qiu Li ◽  
Han Xing Liu ◽  
Zhong Hua Yao ◽  
Jing Xu ◽  
Yun Jiang Cui ◽  
...  

The energy storage density of (1-x) BaTiO3 – x Ba(Mg1/3Nb2/3)O3 (x = 0, 0.1, 0.2, 0.3) ceramics was investigated. The microstructure of samples was characterized by scanning electron microscopy (SEM). The energy storage density was calculated from the P-E hysteresis loops measured at room temperature. Experimental results show that the energy storage density of 0.9 BaTiO3 – 0.1 Ba(Mg1/3Nb2/3)O3 ceramics is highest among all compositions. At 15.8kV/mm electric field, the energy storage density of the sample can reach up to 1.07J/cm3, which is about 1.5 times higher than pure BaTiO3. The improvement of the energy density can be due to two factors: one is the improved breakdown strength caused by the optimized microstructure, the other is the decreased remnant polarization. This result indicates that bulk 0.9 BaTiO3 – 0.1 Ba(Mg1/3Nb2/3)O3 ceramic has advantages compared with pure BaTiO3 ceramic for energy storage applications, and with further improvements in microstructure and reduction of sintering temperature, could be a good candidate for energy storage capacitors.


2019 ◽  
Vol 7 (14) ◽  
pp. 4072-4078 ◽  
Author(s):  
Zhongbin Pan ◽  
Di Hu ◽  
Yang Zhang ◽  
Jinjun Liu ◽  
Bo Shen ◽  
...  

The 0.94(BNT–BST)–0.06KNN ceramic possesses an excellent stored energy storage density (Ws = ∼3.13 J cm−3), a recoverable energy storage density (Wr = ∼2.65 J cm−3), and maintains a relatively high efficiency (η ∼ 84.6%).


Sign in / Sign up

Export Citation Format

Share Document