scholarly journals Effect of Elastic Module Degradation Measurement in Different Sizes of the Nonlinear Isotropic–Kinematic Yield Surface on Springback Prediction

Metals ◽  
2019 ◽  
Vol 9 (5) ◽  
pp. 511 ◽  
Author(s):  
Baara ◽  
Baharudin ◽  
Anuar ◽  
Ismail

Commercial finite element software that uses default hardening model simulation is not able to predict the final shape of sheet metal that changes its dimensions after removing the punch due to residual stress (strain recovery or springback). We aimed to develop a constitutive hardening model to more accurately simulate this final shape. The strain recovery or balancing of residual stress can be determined using the isotropic hardening of the original elastic modulus and the hardening combined with varying degrees of elastic modulus degradation and the size of the yield surfaces. The Chord model was modified with one-yield surfaces. The model was combined with nonlinear isotropic–kinematic hardening models and implemented in Abaqus user-defined material subroutine for constitutive model (UMAT). The Numisheet 2011 benchmark for springback prediction for DP780 high-strength steel sheet was selected to verify the new model, the Chord model, the Quasi Plastic-Elastic (QPE) model, and the default hardening model using Abaqus software. The simulation of U-draw bending from the Numisheet 2011 benchmark was useful for comparing the proposed model with experimental measurements. The results from the simulation of the model showed that the new model more accurately predicts springback than the other models.

2005 ◽  
Vol 127 (3) ◽  
pp. 279-288 ◽  
Author(s):  
Jenn-Terng Gau ◽  
Gary L. Kinzel

A new model for springback, based on isotropic and kinematic hardening models, the Mroz multiple surfaces model, and observations from experimental data, is proposed in this paper. In this model, a material parameter (CM), which is significant after reverse yielding, is suggested to handle the Bauschinger effect. A simple, low-cost, multiple-bending experiment has been developed to determine CM for aluminum alloys AA6022-T4 and AA6111-T4. The new model fits available experimental results better than the isotropic and kinematic hardening models and the Mroz multiple surfaces model.


Metals ◽  
2019 ◽  
Vol 9 (9) ◽  
pp. 1005 ◽  
Author(s):  
Naofal ◽  
Naeini ◽  
Mazdak

In this paper, the uniaxial loading–unloading–reloading (LUR) tensile test was conducted to determine the elastic modulus depending on the plastic pre-strain. To obtain the material parameters and parameter of Yoshida-Uemori’s kinematic hardening models, tension–compression experiments were carried out. The experimental results of the cyclic loading tests together with the numerically predicted response of the plastic behavior were utilized to determine the parameters using the Ls-opt optimization tool. The springback phenomenon is a critical issue in industrial sheet metal forming processes, which could affect the quality of the product. Therefore, it is necessary to represent a method to predict the springback. To achieve this aim, the calibrated plasticity models based on appropriate tests (cyclic loading) were implemented in commercial finite element (FE) code Ls-dyna to predict the springback in the roll forming process. Moreover, appropriate experimental tests were performed to validate the numerical results, which were obtained by the proposed model. The results showed that the hardening models and the variation of elastic modulus have significant impact on springback accuracy. The Yoshida-Uemori’s hardening represents more accurate prediction of the springback during the roll forming process when compared to isotropic hardening. Using the chord modulus to determine the reduction in elastic modulus gave more accurate results to predict springback when compared with the unloading and loading modulus to both hardening models.


2015 ◽  
Vol 817 ◽  
pp. 8-13 ◽  
Author(s):  
Qiang Ren ◽  
Tian Xia Zou ◽  
Da Yong Li

The UOE process is an effective approach for manufacturing the line pipes used in oil and gas transportation. During the UOE process, a steel plate is crimped along its edges, pressed into a circular pipe with an open-seam by the successively U-O forming stages. Subsequently, the open-seam is closed and welded. Finally, the welded pipe is expanded to obtain a perfectly round shape. In particular, during the O-forming stage the plate is suffered from distinct strain reversal which leads to the Bauschinger effect, i.e., a reduced yield stress at the start of reverse loading following forward strain. In the finite element simulation of plate forming, the material hardening model plays an important role in the springback prediction. In this study, the mechanical properties of API X90 grade steel are obtained by a tension-compression test. Three popular hardening models (isotropic hardening, kinematic hardening and combined hardening) are employed to simulate the CUO forming process. A deep analysis on the deformation and springback behaviors of the plate in each forming stage is implemented. The formed configurations from C-forming to U-forming are almost identical with three hardening models due to the similar forward hardening behaviors. Since the isotropic hardening model cannot represent the Bauschinger effect, it evaluates the higher reverse stress and springback in the O-forming stage which leads to a failure prediction of a zero open-seam pipe. On the contrary, the kinematic hardening model overestimates the Bauschinger effect so that predicts the larger open-seam value. Specifically, the simulation results using the combined hardening model show good agreement in geometric configurations with the practical measurements.


Author(s):  
Dimosthenis Floros ◽  
Andreas Jobst ◽  
Andreas Kergaßner ◽  
Marion Merklein ◽  
Paul Steinmann

AbstractAn holistic view is attempted towards prediction of the effect of residual stresses induced by full-forward extrusion on fatigue life of workpieces during operation. To study the effect of constitutive model on the accuracy of forming simulations, a combined nonlinear isotropic/kinematic hardening model as well as the isotropic hardening part of the same model are calibrated based on five compression-tension-compression uniaxial stress experiments. A full-forward extrusion finite element model is developed adapting both the aforementioned hardening plasticity models and the predicted residual stress states at the surface of the workpiece are compared against that of a corresponding forming experiment. Results show residual stress predictions of remarkable accuracy by the FE-models with the isotropic hardening model. The effect of residual stresses on fatigue life of the workpiece is qualitatively studied by uncoupled multiscale simulations featuring gradient crystal plasticity at the microscale. While the effective (homogenized) macroscale response indicates elastic response during a macroscopically cyclic loading, plasticity accompanying reduction of residual stresses is still present at the microscale within, e.g. grain boundaries.


2016 ◽  
Vol 33 (5) ◽  
pp. 1435-1450 ◽  
Author(s):  
Chuan Liu ◽  
Ying Luo ◽  
Min Yang ◽  
Qiang Fu

Purpose – The purpose of this paper is to clarify the effect of material hardening model and lump-pass method on the thermal-elastic-plastic (TEP) finite element (FE) simulation of residual stress induced by multi-pass welding of materials with cyclic plasticity. Design/methodology/approach – Nickel-base alloy and stainless steel, which are used in J-type weld for manufacturing the nuclear reactor pressure head, can easily harden during multi-pass welding. The J-weld welding experiment is carried out and the temperature cycle and residual stress are measured to validate the TEP simulation. Thermal-mechanical sequence coupling method is employed to get the welding residual stress. The lumped-pass model and pass-by-pass FE model are built and two materials hardening models, kinematic hardening model and mixed hardening model, are adopted during the simulations. The effects of material hardening models and lumped-pass method on the residual stress in J-weld are distinguished. Findings – Based on the kinematic hardening model, the stresses simulated with the lumped-pass FE model are almost consistent with those obtained by the pass-by-pass FE model; while with the mixed hardening material model, the lumped-pass method has great effect on the simulated stress. Practical implications – A computation with mixed isotropic-kinematic material seems not to be the appropriate solution when using the lumped-pass method to save the computation time. Originality/value – In the simulation of multi-pass welding residual stress involved in materials with cyclic plasticity, the material hardening model should be carefully considered. The kinematic hardening model with lump-pass FE model can be used to get better simulation results with less computation time. The results give a direction for welding residual stress simulation for the large structure such as the reactor pressure vessel.


Author(s):  
Jonathan Mullins ◽  
Jens Gunnars

It is generally acknowledged that the material hardening model exerts a considerable effect on predicted weld residual stress fields. For this reason the choice of hardening model has attracted interest among analysts, particularly during recent validation studies. Nevertheless there is still lack of evidence for a hardening model which is generally applicable for all welding geometries. In this work we examine the predictions of nonlinear kinematic, isotropic and mixed hardening models for two different geometries: a single bead on plate weld, and a multi-bead girth weld. Hardening parameters are based on the same openly available mechanical test data. Deformation histories for the two welding geometries are presented. Predicted residual stress profiles are compared with experimental measurements. It is noted that nonlinear kinematic hardening results in good predictions for the single bead welding simulation where hardening in the weld and HAZ is dominated by a single heating and cooling cycle. Isotropic hardening results in good predictions for the 42 bead girth weld, where hardening in the weld and HAZ is heavily influenced by several heating and cooling cycles from the addition of several weld beads and where some relaxation of residual stress is possible. Mixed hardening can result in good predictions for both welding geometries. Additional strategies for development of material models based on isotropic and kinematic hardening and relevant test data are discussed with particular attention paid to intermediate weld geometries.


2013 ◽  
Vol 772 ◽  
pp. 65-71 ◽  
Author(s):  
Ondrej Muránsky ◽  
Cory J. Hamelin ◽  
Mike C. Smith ◽  
Phillip J. Bendeich ◽  
Lyndon Edwards

Constitutive plasticity theory is commonly applied to the numerical analysis of welds in one of three ways: using an isotropic hardening model, a kinematic hardening model, or a mixed isotropic-kinematic hardening model. The choice of model is not entirely dependent on its numerical accuracy, however, as a lack of empirical data will often necessitate the use of a specific approach. The present paper seeks to identify the accuracy of each formalism through direct comparison of the predicted and actual post-weld residual stress field developed in a three-pass 316LN stainless steel slot weldment. From these comparisons, it is clear that while the isotropic hardening model tends to noticeably over-predict and the kinematic hardening model slightly under-predict the residual post-weld stress field, the results using a mixed hardening model are quantitatively accurate. Even though the kinematic hardening model generally provides more accurate results when compared to an isotropic hardening formalism, the latter might be a more appealing choice to engineers requiring a conservative design regarding weld residual stress.


Sign in / Sign up

Export Citation Format

Share Document