Dynamic control of lubrication characteristics in high speed tandem cold rolling

2016 ◽  
Vol 229 ◽  
pp. 407-416 ◽  
Author(s):  
Noriki Fujita ◽  
Yukio Kimura ◽  
Koji Kobayashi ◽  
Kimito Itoh ◽  
Yosuke Amanuma ◽  
...  
2015 ◽  
Vol 216 ◽  
pp. 357-368 ◽  
Author(s):  
Yukio Kimura ◽  
Noriki Fujita ◽  
Yukihiro Matsubara ◽  
Koji Kobayashi ◽  
Yosuke Amanuma ◽  
...  

2013 ◽  
Vol 54 (635) ◽  
pp. 1028-1032 ◽  
Author(s):  
Yukio KIMURA ◽  
Noriki FUJITA ◽  
Yukihiro MATSUBARA ◽  
Koji KOBAYASHI ◽  
Yosuke AMANUMA ◽  
...  

Materials ◽  
2021 ◽  
Vol 14 (23) ◽  
pp. 7124
Author(s):  
Ivan Petryshynets ◽  
František Kováč ◽  
Ladislav Falat

High-strength non-oriented electro-technical steels with a low thickness possess excellent isotropy of electromagnetic and mechanical properties which is highly required in the production of high-efficiency electric motors. The manufacturing process of this type of steel includes very important and technologically complex routes such as hot rolling, cold rolling, temper rolling, or final heat treatment. The final thickness is responsible for the decrease in eddy-current losses and is effectively achieved during cold rolling by the tandem rolling mill. Industrial production of thin sheets of high-strength silicon steels in high-speed tandem rolling mills is a rather demanding technological operation due to the increased material brittleness that is mainly caused by the intensive solid solution and deformation strengthening processes, making the dislocation motion more complex. The main objective of this work was to investigate the distribution of local mechanical strains through the thickness of high silicon steel hot bands, generated during the cold rolling. The experimental samples were analysed by means of electron back-scattered diffraction and scanning electron microscopy. From the performed analyses, the correlation between the material workability and the nucleation of cracks causing the observed steel strip failure during the tandem cold rolling was characterized. Specifically, the microstructural, textural, misorientation, and fractographic analyses clearly show that the investigated hot band was characterized by a bimodal distribution of ferrite grains and the formation of intergranular cracks took place only between the grains with recrystallized and deformed structures.


2015 ◽  
Vol 219 ◽  
pp. 295-302 ◽  
Author(s):  
Noriki Fujita ◽  
Yukio Kimura ◽  
Koji Kobayashi ◽  
Yosuke Amanuma ◽  
Yasuhiro Sodani

2018 ◽  
Vol 10 (7) ◽  
pp. 168781401879065 ◽  
Author(s):  
Shuai Mo ◽  
Shengping Zhu ◽  
Guoguang Jin ◽  
Jiabei Gong ◽  
Zhanyong Feng ◽  
...  

High-speed heavy-load spiral bevel gears put forward high requirement for flexural strength; shot peening is a technique that greatly improves the bending fatigue strength of gears. During shot peening, a large number of fine pellets bombard the surface of the metal target material at very high speeds and let the target material undergo plastic deformation, at the same time strengthening layer is produced. Spiral bevel gear as the object of being bombarded inevitably brought the tooth surface micro-morphology changes. In this article, we aim to reveal the effect of microtopography of tooth shot peening on gear lubrication in spiral bevel gear, try to establish a reasonable description of the microscopic morphology for tooth surface by shot peening, to reveal the lubrication characteristics of spiral bevel gears after shot peening treatment based on the lubrication theory, and do comparative research on the surface lubrication characteristics of a variety of microstructures.


Author(s):  
Nabilah Aisyah ◽  
Maaspaliza Azri ◽  
Auzani Jidin ◽  
M. Z. Aihsan ◽  
MHN Talib

<span>Since the early 1980s, fast torque dynamic control has been a subject of research in AC drives. To achieve superior torque dynamic control, two major techniques are used, namely Field Oriented Control (FOC) and Direct Torque Control (DTC), spurred on by rapid advances in embedded computing systems. Both approaches employ the space vector modulation (SVM) technique to perform the voltage source inverter into over modulation region for producing the fastest torque dynamic response. However, the motor current tends to increase beyond its limit (which can damage the power switches) during the torque dynamic condition, due to inappropriate flux level (i.e. at rated stator flux). Moreover, the torque dynamic response will be slower, particularly at high speed operations since the increase of stator flux will produce negative torque slopes more often. The proposed research aims to formulate an optimal switching modulator and produce the fastest torque dynamic response. In formulating the optimal switching modulator, the effects of selecting different voltage vectors on torque dynamic responses will be investigated. With greater number of voltage vectors offered in dual inverters, the identification of the most optimal voltage vectors for producing the fastest torque dynamic responses will be carried out based on the investigation. The main benefit of the proposed strategy is that it provides superior fast torque dynamic response which is the main requirements for many AC drive applications, e.g. traction drives, electric transportations and vehicles.</span>


Sign in / Sign up

Export Citation Format

Share Document