Process mechanisms based on powder flow spatial distribution in direct metal deposition

2018 ◽  
Vol 254 ◽  
pp. 361-372 ◽  
Author(s):  
Hua Tan ◽  
Weixun Shang ◽  
Fengying Zhang ◽  
Adam T. Clare ◽  
Xin Lin ◽  
...  
2021 ◽  
Vol 143 (7) ◽  
Author(s):  
Piyush Pant ◽  
Dipankar Chatterjee ◽  
Sudip Kumar Samanta ◽  
Aditya Kumar Lohar

Abstract The work explores the powder transport process, using numerical simulation to address the dynamics of the powder flow in an in-house built multi-channel coaxial nozzle of a direct metal deposition (DMD) system. The fluid turbulence is handled by the standard k–ɛ and k–ω turbulence models, and the results are compared in order to predict their suitability. An image-based technique using CMOS camera is adopted to determine the powder flow characteristics. The model is validated with the in-house experimental results and verified available results in the literature. The findings of this work confirms the application of the k–ω model for powder gas flow investigations in blown powder additive manufacturing (AM) processes due to its better predictive capability. The proposed model will assist in simulating the direct metal deposition process.


2005 ◽  
Vol 128 (2) ◽  
pp. 541-553 ◽  
Author(s):  
Heng Pan ◽  
Todd Sparks ◽  
Yogesh D. Thakar ◽  
Frank Liou

The quality and efficiency of laser-aided direct metal deposition largely depends on the powder stream structure below the nozzle. Numerical modeling of the powder concentration distribution is complex due to the complex phenomena involved in the two-phase turbulence flow. In this paper, the gravity-driven powder flow is studied along with powder properties, nozzle geometries, and shielding gas settings. A 3-D numerical model is introduced to quantitatively predict the powder stream concentration variation in order to facilitate coaxial nozzle design optimizations. Effects of outer shielding gas directions, inner/outer shielding gas flow rate, powder passage directions, and opening width on the structure of the powder stream are systematically studied. An experimental setup is designed to quantitatively measure the particle concentration directly for this process. The numerical simulation results are compared with the experimental data using prototyped coaxial nozzles. The results are found to match and then validate the simulation. This study shows that the particle concentration mode is influenced significantly by nozzle geometries and gas settings.


2019 ◽  
Vol 362 ◽  
pp. 397-408 ◽  
Author(s):  
Daniel Eisenbarth ◽  
Paulo Matheus Borges Esteves ◽  
Florian Wirth ◽  
Konrad Wegener

Author(s):  
A J Pinkerton ◽  
L Li

The additive manufacturing technique of laser direct metal deposition (DMD) has had an impact in rapid prototyping, tooling and small-volume manufacturing applications. Components are built from metallic materials that are deposited by the continuous injection of powder into a moving melt pool, created by a defocused laser beam. The size of the melt pool, the temperature distributions around it and the powder flux are critical in determining process characteristics such as deposition rate. In this paper, the effects that changes in the distance between the laser deposition head and the melt pool have on these factors as a part is built using a coaxial powder feeding system are considered via a two-part analytical model. A heat flow model considers three-dimensional temperature distributions due to a moving Gaussian heat source in a finite volume and a simple mass-flow model considers changes in powder concentration with distance from the deposition head. The model demonstrates the effect of adjusting the melt pool standoff in different ways on melt pool and powder flow characteristics as a DMD structure is built, and hence allows the effect on build rate to be predicted. Its validity is verified by comparison with a series of 316L stainless steel walls, built using different standoff adjustment methods. The model is found to be able to explain the dimensional characteristics found.


Author(s):  
S. Pratheesh Kumar ◽  
S. Elangovan ◽  
R. Mohanraj ◽  
V. Sathya Narayanan

Procedia CIRP ◽  
2020 ◽  
Vol 95 ◽  
pp. 23-28
Author(s):  
Mohammad Rabiey ◽  
Pascal Schiesser ◽  
Pascal Maerchy

Author(s):  
Lie Tang ◽  
Jianzhong Ruan ◽  
Robert G. Landers ◽  
Frank Liou

This paper proposes a novel method, called Variable Powder Flow Rate Control (VPFRC), for the regulation of powder flow rate in laser metal deposition processes. The idea of VPFRC is to adjust the powder flow rate to maintain a uniform powder deposition per unit length even when disturbances occur (e.g., the motion system accelerates and decelerates). Dynamic models of the powder delivery system motor and the powder transport system (i.e., five–meter pipe, powder dispenser, and cladding head) are constructed. A general tracking controller is then designed to track variable powder flow rate references. Since the powder flow rate at the nozzle exit cannot be directly measured, it is estimated using the powder transport system model. The input to this model is the DC motor rotation speed, which is estimated on–line using a Kalman filter. Experiments are conducted to examine the performance of the proposed control methodology. The experimental results demonstrate that the VPFRC method is successful in maintaining a uniform track morphology, even when the motion system accelerates and decelerates.


Sign in / Sign up

Export Citation Format

Share Document