Microstructures refinement and mechanical properties enhancement of aluminum and magnesium alloys by combining distributary-confluence channel process for semisolid slurry preparation with high pressure die-casting

2020 ◽  
Vol 285 ◽  
pp. 116800 ◽  
Author(s):  
Mingfan Qi ◽  
Yonglin Kang ◽  
Jingyuan Li ◽  
Zhumabieke Wulabieke ◽  
Yuzhao Xu ◽  
...  
Materials ◽  
2003 ◽  
Author(s):  
Weilong Chen

In recent years, high-pressure die-casting magnesium components have been gaining currency worldwide because of the excellent properties that magnesium alloys can offer to meet new product requirements. With the increasing application of magnesium parts worldwide, many research and development projects have been carried out to advance HPDC technology. However, truly optimized mold design and production of defect free castings remains a challenge for die casters. For many HPDC magnesium products, especially those specified for porosity-free and high cosmetic requirement, the challenge not only comes form a lack of a deeper understanding of how molten magnesium alloys fill the mold cavity and form defects, but also from improper preliminary part design. This study proposes a virtual prototyping system that integrates several effective soft and hardware tools for both the part and mold-design engineer to evaluate part manufacturability. Also, investigated in this study are the major causes of those defects that are the predominant cause of rejection of thin walled, leak-free magnesium parts requiring highly cosmetic finishes.


2013 ◽  
Vol 765 ◽  
pp. 64-68 ◽  
Author(s):  
Feng Yan ◽  
Shou Xun Ji ◽  
Zhong Yun Fan

In this work we found that the addition of excess Mg can significantly improve the mechanical properties of pseudo-binary Al-Mg2Si alloys after high pressure die casting (HPDC). Al-8Mg2Si-6Mg alloy offered an excellent combination of high strength and reasonable ductility. Excess Mg lowers the Mg2Si content in the eutectic reaction and promotes the formation of Mg2Si as the primary phase, and this is believed to be the origin of improved mechanical performance.


2008 ◽  
Vol 141-143 ◽  
pp. 151-156 ◽  
Author(s):  
E.P. Masuku ◽  
Gonasagren Govender ◽  
L. Ivanchev ◽  
Heinrich Möller

Rheocasting of alloys A206 and A201 was investigated in this study. Conical bars with different silver contents were produced using CSIR rheoprocess technology, together with high pressure die casting. The results showed that addition of Ag to alloy A206 increased the mechanical properties of the alloy. However, the addition of Ag also resulted in Cu-rich phases to precipitate at the grain boundaries of the as-cast material. The solution treatment used in this study was unable to dissolve all of this phase, especially in the 1.12%Ag-containing alloy. This resulted in slightly decreased mechanical properties compared to the 0.63%Ag-containing alloy. The T6 mechanical properties (strength and elongation) obtained in this study for rheocast A206 and A201 are better than those reported for permanent mould castings of alloy A206 and A201.


Sign in / Sign up

Export Citation Format

Share Document