scholarly journals Guide to mechanical characterization of articular cartilage and hydrogel constructs based on a systematic in silico parameter sensitivity analysis

Author(s):  
Seyed Ali Elahi ◽  
Petri Tanska ◽  
Satanik Mukherjee ◽  
Rami K. Korhonen ◽  
Liesbet Geris ◽  
...  
Author(s):  
Tianqi Wang ◽  
Weiwei Jin ◽  
Fuyou Liang ◽  
Jordi Alastruey

An abdominal aortic aneurysm (AAA) is usually asymptomatic until rupture, which is associated with extremely high mortality. Consequently, early detection of AAAs is of paramount importance in reducing mortality; however, most AAAs are detected by medical imaging incidentally. The aim of this study was to investigate the feasibility of machine learning-based pulse wave (PW) analysis for the early detection of AAAs using a database of in silico PWs. PWs in the large systemic arteries were simulated using one-dimensional blood flow modelling. A database of in silico PWs representative of subjects (aged 55, 65 and 75 years) with different AAA sizes was created by varying the AAA-related parameters with major impacts on PWs – identified by parameter sensitivity analysis – in an existing database of in silico PWs representative of subjects without AAA. Then, a machine learning architecture for early detection of AAAs was proposed, which was trained and tested using the new in silico PW database. The parameter sensitivity analysis revealed that the AAA maximum diameter and stiffness of the large systemic arteries were the dominant AAA-related biophysical properties that significantly influence the PW. The simulated PW indexes extracted from the database showed that the PW was not only influenced by the presence of an AAA but was also significantly affected by multiple cardiovascular parameters that compromised the detection of AAAs by using individual PW indexes. Alternatively, the trained machine learning model performed well in classifying normal and AAA conditions using digital photoplethysmogram PWs from the database. These findings suggest that machine learning-based PW analysis is a promising approach for AAA screening using PW signals acquired by wearable devices.


Author(s):  
H. Torab

Abstract Parameter sensitivity for large-scale systems that include several components which interface in series is presented. Large-scale systems can be divided into components or sub-systems to avoid excessive calculations in determining their optimum design. Model Coordination Method of Decomposition (MCMD) is one of the most commonly used methods to solve large-scale engineering optimization problems. In the Model Coordination Method of Decomposition, the vector of coordinating variables can be partitioned into two sub-vectors for systems with several components interacting in series. The first sub-vector consists of those variables that are common among all or most of the elements. The other sub-vector consists of those variables that are common between only two components that are in series. This study focuses on a parameter sensitivity analysis for this special case using MCMD.


Sign in / Sign up

Export Citation Format

Share Document