scholarly journals Evaluation of a chlorine dioxide water treatment system to control Legionella species in a hospital water System

2015 ◽  
Vol 48 (2) ◽  
pp. S137
Author(s):  
Yao-Ru Tseng ◽  
Tsen - Lu Cho ◽  
Kuei-Chu Li ◽  
Hsiu-Shen Lin ◽  
Kao-Pin Hwang ◽  
...  
2003 ◽  
Vol 24 (8) ◽  
pp. 575-579 ◽  
Author(s):  
Arjun Srinivasan ◽  
Gregory Bova ◽  
Tracy Ross ◽  
Karen Mackie ◽  
Nicholas Paquette ◽  
...  

AbstractObjective:To assess the safety and efficacy of a chlorine dioxide water treatment system in controlling Legionella in a hospital water supply.Design:For 17 months following installation of the system, we performed regular water cultures throughout the building, assessed chlorine dioxide and chlorite levels, and monitored metal corrosion.Results:Sites that grew Legionella species decreased from 41% at baseline to 4% (P = .001). L. anisa was the only species recovered and it was found in samples of both hot and cold water. Levels of chlorine dioxide and chlorite were below Environmental Protection Agency (EPA) limits for these chemicals in potable water. Further, enhanced carbon filtration effectively removed the chemicals, even at chlorine dioxide levels of more than twice what was used to treat the water. After 9 months, corrosion of copper test strips exposed to the chlorine dioxide was not higher than that of control strips. During the evaluation period, there were no cases of nosocomial Legionella in the building with the system, whereas there was one case in another building.Conclusions:Our results indicate that operation of a chlorine dioxide system effectively removed Legionella species from a hospital water supply. Furthermore, we found that the system was safe, as levels of chlorine dioxide and chlorite were below EPA limits. The system did not appear to cause increased corrosion of copper pipes. Our results indicate that chlorine dioxide may hold promise as a solution to the problem of Legionella contamination of hospital water supplies.


2018 ◽  
Vol 18 (1) ◽  
pp. 107-115 ◽  
Author(s):  
Kwang-Hee Lee ◽  
◽  
Min-Ho Kim ◽  
Nam-Woo An ◽  
Chul-hwi Park

1988 ◽  
Vol 20 (11-12) ◽  
pp. 117-123 ◽  
Author(s):  
D. van der Kooij ◽  
W. A. M. Hijnen

A K.pneumoniae strain, isolated from a water treatment system, was tested in growth measurements for its ability to multiply at substrate concentrations of a few micrograms per liter. The organism multiplied on mixtures of carbohydrates and amino acids at a substrate concentration of 1 µg of C of each compound per liter. Tests with individual compounds revealed that especially carbohydrates were utilized at low concentrations. The Ks values obtained for maltose and maltopentaose were 53 µg of C/l and 114 µg of C per liter, respectively. The significance of the growth of K.pneumoniae at low substrate concentrations is discussed.


Author(s):  
Hongsik Yoon ◽  
Jiho Lee ◽  
Taijin Min ◽  
Gunhee Lee ◽  
Minsub Oh

Capacitive deionization (CDI) has been highlighted as a promising electrochemical water treatment system. However, the low deionization capacity of CDI electrodes has been a major limitation for its industrial application,...


RSC Advances ◽  
2021 ◽  
Vol 11 (32) ◽  
pp. 19788-19796
Author(s):  
Bramha Gupta ◽  
Rushikesh S. Ambekar ◽  
Raphael M. Tromer ◽  
Partha Sarathi Ghosal ◽  
Rupal Sinha ◽  
...  

The impact of micro and nanoplastic debris on our aquatic ecosystem is among the most prominent environmental challenges we face today.


2008 ◽  
Vol 80 (8) ◽  
pp. 703-707 ◽  
Author(s):  
Steven J. Wright ◽  
Jeremy D. Semrau ◽  
David R. Keeney

Sign in / Sign up

Export Citation Format

Share Document