scholarly journals Quantum dynamics of exchange biased single-molecule magnets

2004 ◽  
Vol 272-276 ◽  
pp. 1037-1041 ◽  
Author(s):  
W. Wernsdorfer ◽  
N. Aliaga-Alcalde ◽  
R. Tiron ◽  
D.N. Hendrickson ◽  
G. Christou
Author(s):  
W. Wernsdorfer

This article describes the quantum phenomena observed in molecular nanomagnets. Molecular nanomagnets, or single-molecule magnets (SMMs), provides a fundamental link between spintronics and molecular electronics. SMMs combine the classic macroscale properties of a magnet with the quantum properties of a nanoscale entity. The resulting field, molecular spintronics, aims at manipulating spins and charges in electronic devices containing one or more molecules. This article first considers molecular nanomagnets and the giant spin model for nanomagnets before discussing the quantum dynamics of a dimer of nanomagnets, resonant photon absorption in Cr7Ni antiferromagnetic rings, and photon-assisted tunnelling in a single-molecule magnet. It also examines environmental decoherence effects in nanomagnets and concludes by highlighting the new trends towards molecular spintronics using junctions and nano-SQUIDs.


2020 ◽  
Author(s):  
Stanislav Avdoshenko ◽  
Rajyavardhan Ray

With single-molecule magnets research on the rise as a result of recent advantages in the field, like remarkable high blocking temperatures up to 60 Kelvin [Nature, 548, 439, 2017], gigantic coercivity up to 80 Tesla [Nat Commun., 10, 571, 2019], magnetization stability in the thin films, further applications are seriously in the scope. The possible venue here is to develop a theory of magnetic moment manipulation and control at the microscopic level. Theory of optimal control in quantum dynamics in complex systems is well-developed. For example, the uses of density matrix techniques have been well summarized already in the early ‘60s by Fano, Haar, and many others. Thus, in many respects, the task is to reframe that research into the language of the problem at hand, and into familiar terms for the community. Recently, it was already proven the Redfield reduced density matrix techniques are applicable for slow-relaxing single-molecule magnets [Nat Commun., 8, 14620, 2017]. In our recent contribution[PCCP,20, 11656, 2018], we have outlined the use of Lindblad dynamics in combination with a few axioms in the rationalization of the relaxation behavior of single-molecule magnets. In this report we put this approach in the context of the magentodynamics theory, showing the close connection to the Landau-Lifshitz-Gilbert model and presenting further elaboration for the proposed method.


2020 ◽  
Author(s):  
Stanislav Avdoshenko ◽  
Rajyavardhan Ray

With single-molecule magnets research on the rise as a result of recent advantages in the field, like remarkable high blocking temperatures up to 60 Kelvin [Nature, 548, 439, 2017], gigantic coercivity up to 80 Tesla [Nat Commun., 10, 571, 2019], magnetization stability in the thin films, further applications are seriously in the scope. The possible venue here is to develop a theory of magnetic moment manipulation and control at the microscopic level. Theory of optimal control in quantum dynamics in complex systems is well-developed. For example, the uses of density matrix techniques have been well summarized already in the early ‘60s by Fano, Haar, and many others. Thus, in many respects, the task is to reframe that research into the language of the problem at hand, and into familiar terms for the community. Recently, it was already proven the Redfield reduced density matrix techniques are applicable for slow-relaxing single-molecule magnets [Nat Commun., 8, 14620, 2017]. In our recent contribution[PCCP,20, 11656, 2018], we have outlined the use of Lindblad dynamics in combination with a few axioms in the rationalization of the relaxation behavior of single-molecule magnets. In this report we put this approach in the context of the magentodynamics theory, showing the close connection to the Landau-Lifshitz-Gilbert model and presenting further elaboration for the proposed method.


2018 ◽  
Vol 185 ◽  
pp. 11004
Author(s):  
D.I. Plokhov ◽  
A.I. Popov ◽  
A.K. Zvezdin

The current-driven quantum dynamics of toroidal moment in single molecule magnets with polygonal rare-earth ion core is investigated. The effects of an external current is considered both in equilibrium and in the frames of the Landau-Zener-Stückelberg tunneling model. It is shown that the toroidal moment is a suitable degree of freedom for using the systems in question as qubits in quantum computing.


2019 ◽  
Author(s):  
Guo-Zhang Huang ◽  
Ze-Yu Ruan ◽  
Jie-Yu Zheng ◽  
Yan-Cong Chen ◽  
Si-Guo Wu ◽  
...  

<p><a></a>Controlling molecular magnetic anisotropy via structural engineering is delicate and fascinating, especially for single-molecule magnets (SMMs). Herein a family of dysprosium single-ion magnets (SIMs) sitting in pentagonal bipyramid geometry have been synthesized with the variable-size terminal ligands and counter anions, through which the subtle coordination geometry of Dy(III) can be finely tuned based on the size effect. The effective energy barrier (Ueff) successfully increases from 439 K to 632 K and the magnetic hysteresis temperature (under a 200 Oe/s sweep rate) raises from 11 K to 24 K. Based on the crystal-field theory, a semi-quantitative magneto-structural correlation deducing experimentally for the first time is revealed that the Ueff is linearly proportional to the structural-related value S2<sup>0</sup> corresponding to the axial coordination bond lengths and the bond angles. Through the evaluation of the remanent magnetization from hysteresis, quantum tunneling of magnetization (QTM) is found to exhibit negative correlation with the structural-related value S<sub>tun</sub> corresponding to the axial coordination bond angles.<br></p>


2018 ◽  
Author(s):  
Marcus J. Giansiracusa ◽  
Andreas Kostopoulos ◽  
George F. S. Whitehead ◽  
David Collison ◽  
Floriana Tuna ◽  
...  

We report a six coordinate DyIII single-molecule magnet<br>(SMM) with an energy barrier of 1110 K for thermal relaxation of<br>magnetization. The sample shows no retention of magnetization<br>even at 2 K and this led us to find a good correlation between the<br>blocking temperature and the Raman relaxation regime for SMMs.<br>The key parameter is the relaxation time (𝜏<sub>switch</sub>) at the point where<br>the Raman relaxation mechanism becomes more important than<br>Orbach.


2018 ◽  
Author(s):  
Shannon Houck ◽  
Nicholas Mayhall

<div>Many multiconfigurational systems, such as single-molecule magnets, are difficult to study using traditional computational methods due to the simultaneous existence of both spin and spatial degeneracies. In this work, a new approach termed n-spin-flip Ionization Potential/Electron Affinity (<i>n</i>SF-IP or <i>n</i>SF-EA) is introduced which combines the spin-flip method of Anna Krylov with particle-number changing IP/EA methods. We demonstrate the efficacy of the approach by applying it to the strongly-correlated N<sub>2</sub><sup>+</sup> as well as several double exchange systems. We also demonstrate that when these systems are well-described by a double exchange model Hamiltonian, only 1SF-IP/EA is required to extract the double exchange parameters and accurately predict energies for the low-spin states. This significantly reduces the computational effort for studying such systems. The effects of including additional excitations (using a RAS-<i>n</i>SF-IP/EA scheme) are also examined, with particular emphasis on hole and particle excitations.</div>


2018 ◽  
Author(s):  
Shannon Houck ◽  
Nicholas Mayhall

<div>Many multiconfigurational systems, such as single-molecule magnets, are difficult to study using traditional computational methods due to the simultaneous existence of both spin and spatial degeneracies. In this work, a new approach termed n-spin-flip Ionization Potential/Electron Affinity (<i>n</i>SF-IP or <i>n</i>SF-EA) is introduced which combines the spin-flip method of Anna Krylov with particle-number changing IP/EA methods. We demonstrate the efficacy of the approach by applying it to the strongly-correlated N<sub>2</sub><sup>+</sup> as well as several double exchange systems. We also demonstrate that when these systems are well-described by a double exchange model Hamiltonian, only 1SF-IP/EA is required to extract the double exchange parameters and accurately predict energies for the low-spin states. This significantly reduces the computational effort for studying such systems. The effects of including additional excitations (using a RAS-<i>n</i>SF-IP/EA scheme) are also examined, with particular emphasis on hole and particle excitations.</div>


2013 ◽  
Vol 3 (2) ◽  
pp. 101-111 ◽  
Author(s):  
Peng Zhang ◽  
Li Zhang ◽  
Jinkui Tang

Sign in / Sign up

Export Citation Format

Share Document