Quantification of magnetic flux density in non-oriented electrical steel sheets by analysis of texture components

2011 ◽  
Vol 323 (17) ◽  
pp. 2248-2253 ◽  
Author(s):  
H.G. Kang ◽  
K.M. Lee ◽  
M.Y. Huh ◽  
J.S. Kim ◽  
J.T. Park ◽  
...  
2012 ◽  
Vol 602-604 ◽  
pp. 435-440 ◽  
Author(s):  
Na Li ◽  
Li Xiang ◽  
Pei Zhao

The effect of antimony on the structure, texture and magnetic properties of high efficiency non-oriented electrical steel were investigated. The results showed that antimony played an important role on inhibiting the grain growth and enhancing the fraction of favorable texture in the annealed steels. With the increase of antimony content, core loss of specimens monotonously increased and the magnetic flux density increased firstly and then decreased. The magnetic properties of specimen results showed that the magnetic flux density in the steel with 0.12% antimony reached the maximum value, while the core loss didn’t increase obviously. However, when the antimony content in steel reached 0.22%, the magnetic properties deteriorated significantly. This is maybe that the addition of antimony in steels inhibited the development of {111} texture content and increased the intensity of Goss and {100} texture on the grain boundary.


2005 ◽  
Vol 41 (10) ◽  
pp. 3310-3312 ◽  
Author(s):  
K. Mori ◽  
S. Yanase ◽  
Y. Okazaki ◽  
S. Hashi

2007 ◽  
Vol 550 ◽  
pp. 527-532 ◽  
Author(s):  
Jae Young Choi ◽  
Chel Min Park ◽  
Jong Tae Park ◽  
Jae Kwan Kim

The effects of hot band annealing temperature on the texture of the 2%Si nonoriented electrical steel were investigated. Slab was hot rolled and then hot band annealed in the temperature range of 900°C~1100°C. The magnetic flux density and the core loss were improved by the hot band annealing because of the texture improvement. As the hot band annealing temperature was increased, the magnetic properties were improved. The microstructure of the hot band was composed of a recrystallized structure at the surface and a deformation structure near the middle plane. These hot bands were completely recrystallized after annealing above 1000°C. The main texture of the hot band was rotated cube and gamma-fibre. After hot band annealing, rotated cube changed to cube texture and gamma-fibre intensity gradually decreased. In the case of non-annealed hot band, rotated cube in the middle plane was changed to near {111}<112>texture and Goss texture in the surface to gamma fibre after final annealing. In the case of the hot band annealed at 900°C, rotated cube near the middle plane changed to Goss texture and Goss texture in the surface to rotated cube after final annealing. After final annealing, the {111} and {112} texture was dramatically decreased as the hot band annealing temperature was higher. The total {100} texture intensity was not changed. Cube texture {100}<001> increased and rotated cube texture {100}<011> decreased. The {110} texture increased after hot band annealing irrespective of temperature. As the hot band annealing temperature was higher, the Goss texture increased, and this increase of Goss texture causes the anisotropy of the magnetic flux density.


Energies ◽  
2021 ◽  
Vol 14 (14) ◽  
pp. 4110
Author(s):  
Witold Mazgaj ◽  
Michal Sierzega ◽  
Zbigniew Szular

This paper describes a simple method of approximating hysteresis changes in electrical steel sheets. This method is based on assumptions that flux density or field strength changes are a sum or a difference of functions that describe one curve of the limiting hysteresis loop and a certain ‘transient’ component. Appropriate formulas that present the flux density as functions of the field strength and those that present inverse dependencies are proposed. An application of this approximation requires knowledge of the measured limiting hysteresis loop and a few minor loops. Algorithms for determining changes in the flux density or field strength are proposed and discussed. The correctness of the proposed approximation of hysteresis changes was verified through a comparison of measured hysteresis loops with the loops calculated for several different excitations of the magnetic field occurring in dynamo and transformer steel sheets. Additionally, an example of the application of the proposed approximation of hysteresis changes is discussed in the paper. The proposed approximation of hysteresis changes is recommended for numerical calculations of the magnetic field distribution in dynamo and transformer steel sheets.


Sign in / Sign up

Export Citation Format

Share Document