Steel microstructure – Magnetic permeability modelling: The effect of ferrite grain size and phase fraction

2021 ◽  
Vol 519 ◽  
pp. 167439
Author(s):  
Lei Zhou ◽  
Claire Davis ◽  
Piet Kok
2004 ◽  
Vol 467-470 ◽  
pp. 223-228
Author(s):  
K.M. Banks

Various microstructure models for Nb-bearing steels were tested under industrial strip rolling conditions to establish a relationship between grain size and toughness in Ti-Nb-V microalloyed steels. For similar Nb contents, microstructure models for Nb steels were found to adequately describe recrystallisation kinetics in more complex Ti-Nb-V steels. For thick-walled linepipe (11.6mm), a minimum of 0.04%Nb is required to achieve adequate toughness. Retained strain was the dominant processing parameter factor affecting ferrite grain size. The predicted minimum amount of retained strain after the last pass required for sufficient grain refinement concurred with laboratory simulation results. For the rolling schedules investigated, metadynamic recrystallisation was predicted to occur during roughing, whilst static recrystallisation was predominant during finishing.


2010 ◽  
Vol 2010 ◽  
pp. 1-16 ◽  
Author(s):  
Yngve Bergström ◽  
Ylva Granbom ◽  
Dirk Sterkenburg

A dislocation model, accurately describing the uniaxial plastic stress-strain behavior of dual phase (DP) steels, is proposed and the impact of martensite content and ferrite grain size in four commercially produced DP steels is analyzed. It is assumed that the plastic deformation process is localized to the ferrite. This is taken into account by introducing a nonhomogeneity parameter, f(ε), that specifies the volume fraction of ferrite taking active part in the plastic deformation process. It is found that the larger the martensite content the smaller the initial volume fraction of active ferrite which yields a higher initial deformation hardening rate. This explains the high energy absorbing capacity of DP steels with high volume fractions of martensite. Further, the effect of ferrite grain size strengthening in DP steels is important. The flow stress grain size sensitivity for DP steels is observed to be 7 times larger than that for single phase ferrite.


2018 ◽  
Vol 2018 (10) ◽  
pp. 968-972
Author(s):  
A. A. Vasilyev ◽  
S. F. Sokolov ◽  
P. S. Zhitelev ◽  
D. F. Sokolov ◽  
N. G. Kolbasnikov ◽  
...  

Sign in / Sign up

Export Citation Format

Share Document