scholarly journals Transferring a Quantitative Molecular Diagnostic Test to Multiple Real-Time Quantitative PCR Platforms

2018 ◽  
Vol 20 (4) ◽  
pp. 398-414 ◽  
Author(s):  
Claudia Gürtler ◽  
Mark Laible ◽  
Wolfgang Schwabe ◽  
Heike Steinhäuser ◽  
Xingmin Li ◽  
...  
2014 ◽  
Vol 2014 ◽  
pp. 1-8
Author(s):  
Pricila da Silva Cunha ◽  
Heloisa B. Pena ◽  
Carla Sustek D’Angelo ◽  
Celia P. Koiffmann ◽  
Jill A. Rosenfeld ◽  
...  

Monosomy 1p36 is considered the most common subtelomeric deletion syndrome in humans and it accounts for 0.5–0.7% of all the cases of idiopathic intellectual disability. The molecular diagnosis is often made by microarray-based comparative genomic hybridization (aCGH), which has the drawback of being a high-cost technique. However, patients with classic monosomy 1p36 share some typical clinical characteristics that, together with its common prevalence, justify the development of a less expensive, targeted diagnostic method. In this study, we developed a simple, rapid, and inexpensive real-time quantitative PCR (qPCR) assay for targeted diagnosis of monosomy 1p36, easily accessible for low-budget laboratories in developing countries. For this, we have chosen two target genes which are deleted in the majority of patients with monosomy 1p36:PRKCZandSKI. In total, 39 patients previously diagnosed with monosomy 1p36 by aCGH, fluorescentin situhybridization (FISH), and/or multiplex ligation-dependent probe amplification (MLPA) all tested positive on our qPCR assay. By simultaneously using these two genes we have been able to detect 1p36 deletions with 100% sensitivity and 100% specificity. We conclude that qPCR ofPRKCZandSKIis a fast and accurate diagnostic test for monosomy 1p36, costing less than 10 US dollars in reagent costs.


2015 ◽  
Vol 61 (1) ◽  
pp. 202-212 ◽  
Author(s):  
Stephen Bustin ◽  
Harvinder S Dhillon ◽  
Sara Kirvell ◽  
Christina Greenwood ◽  
Michael Parker ◽  
...  

Abstract BACKGROUND The reverse transcription (RT) of RNA to cDNA is a necessary first step for numerous research and molecular diagnostic applications. Although RT efficiency is known to be variable, little attention has been paid to the practical implications of that variability. METHODS We investigated the reproducibility of the RT step with commercial reverse transcriptases and RNA samples of variable quality and concentration. We quantified several mRNA targets with either singleplex SYBR Green I or dualplex probe-based reverse transcription real-time quantitative PCR (RT-qPCR), with the latter used to calculate the correlation between quantification cycles (Cqs) of mRNA targets amplified in the same real-time quantitative PCR (qPCR) assay. RESULTS RT efficiency is enzyme, sample, RNA concentration, and assay dependent and can lead to variable correlation between mRNAs from the same sample. This translates into relative mRNA expression levels that generally vary between 2- and 3-fold, although higher levels are also observed. CONCLUSIONS Our study demonstrates that the variability of the RT step is sufficiently large to call into question the validity of many published data that rely on quantification of cDNA. Variability can be minimized by choosing an appropriate RTase and high concentrations of RNA and characterizing the variability of individual assays by use of multiple RT replicates.


2018 ◽  
Vol 38 (5) ◽  
Author(s):  
Niyaz A. Azad ◽  
Zafar A. Shah ◽  
Arshad A. Pandith ◽  
Roohi Rasool ◽  
Samoon Jeelani

Molecular monitoring of BCR-ABL transcript levels by real-time quantitative PCR is increasingly being used to diagnose the disease and assess treatment response in patients with chronic myeloid leukemia (CML). This has become particularly relevant when residual levels of leukemia usually fall below the level of detection by cytogenetic analysis. Forty-two CML patients, including 18 males (42.86%) and 24 females (57.14%) aged 7–75 years, were enlisted for the study and followed-up for the response to imatinib treatment. Patients were subjected to Multiplex RT-PCR (reverse-transcriptase PCR) and were all found to harbor either e13a2 or the e14a2, which could be analyzed by a single Taqman probe based quantitation kit (Geno-Sen’s) to quantitate the BCR-ABL transcript load. The Multiplex RT-PCR and peripheral blood cytogenetics providing specific and sensitive detection of BCR-ABL fusion transcripts and metaphase signal load respectively were used as parallel reference tools to authenticate the q-PCR findings. There was 100% concordance between the multiplex RT-PCR and the q-PCR as every positive RT-PCR assay for a transcript reflected as q-PCR load of above 0% for that transcript. q-PCR also demonstrated a strong Pearson correlation with the cytogenetic response.


2006 ◽  
Vol 72 (12) ◽  
pp. 7894-7896 ◽  
Author(s):  
Silvia Bofill-Mas ◽  
Nestor Albinana-Gimenez ◽  
Pilar Clemente-Casares ◽  
Ayalkibet Hundesa ◽  
Jesus Rodriguez-Manzano ◽  
...  

ABSTRACT Human adenoviruses (HAdV) and human polyomavirus JCPyV have been previously proposed as indicators of fecal viral contamination in the environment. Different wastewater matrices have been analyzed by applying real-time quantitative PCR procedures for the presence, quantity, and stability of a wide diversity of excreted HAdV and JCPyV. High quantities of HAdV and JCPyV were detected in sewage, effluent wastewater, sludge, and biosolid samples. Both viruses showed high stability in urban sewage. These results confirm the suitability of both viruses as indicators of human fecal viral pollution.


Sign in / Sign up

Export Citation Format

Share Document