Lattice rotation caused by wedge indentation of a single crystal: Dislocation dynamics compared to crystal plasticity simulations

2014 ◽  
Vol 68 ◽  
pp. 267-279 ◽  
Author(s):  
Yunhe Zhang ◽  
Yanfei Gao ◽  
Lucia Nicola
2015 ◽  
Vol 1 (1) ◽  
Author(s):  
Sagar Chandra ◽  
M. K. Samal ◽  
V. M. Chavan ◽  
R. J. Patel

AbstractA hierarchical multiscale modeling approach is presented to predict the mechanical response of dynamically deformed (1100 s−1−4500 s−1) copper single crystal in two different crystallographic orientations.Anattempt has been made to bridge the gap between nano-, micro- and meso- scales. In view of this, Molecular Dynamics (MD) simulations at nanoscale are performed to quantify the drag coefficient for dislocations which has been exploited in Dislocation Dynamics (DD) regime at the microscale. Discrete dislocation dynamics simulations are then performed to calculate the hardening parameters required by the physics based Crystal Plasticity (CP) model at the mesoscale. The crystal plasticity model employed is based on thermally activated theory for plastic flow. Crystal plasticity simulations are performed to quantify the mechanical response of the copper single crystal in terms of stressstrain curves and shape changes under dynamic loading. The deformation response obtained from CP simulations is in good agreement with the experimental data.


Author(s):  
F. P. E. Dunne ◽  
R. Kiwanuka ◽  
A. J. Wilkinson

A gradient-enhanced crystal plasticity model is presented that explicitly accounts for the evolution of the densities of geometrically necessary dislocations (GNDs) on individual slip systems of deforming crystals. The GND densities are fully coupled with the crystal slip rule. Application of the model to two distinct and technologically important crystal types, namely hcp Ti and ccp Ni, is given. For the hcp crystals, slip is permitted with a -type slip directions on basal, prismatic and pyramidal planes and c + a -type slip directions on pyramidal planes. First, a single crystal under four-point bending is simulated as the uniform strain gradient expected in the central span provides a good validation of the code. Then, uniaxial deformation of a model near- α Ti polycrystal has been analysed. The resulting distributions of GND densities that develop on the various slip system types have been compared with independent experimental observations. The model predicts that GND density on the c + a systems is approximately an order of magnitude lower than that for a -type systems in agreement with experiment. For the ccp case, slip is considered to take place on the <110>{111} slip systems. Thermal loading of a single-crystal nickel alloy sample containing carbide particles of size approximately 30 μm has been analysed. Detailed comparisons are presented between model predictions and results of high-resolution electron backscatter diffraction (EBSD) measurements of the micro-deformations, lattice rotations, curvatures and GND densities local to the nickel–carbide interface. Qualitatively, good agreement is achieved between the coupled and decoupled model elastic strains with the EBSD measurements, but lattice rotations and GND densities are quantitatively well predicted by the coupled crystal model but are less well captured by the decoupled model. The GND coupling is found to lead to reduced lattice rotations and plastic strains in the region of highest heterogeneity close to the Ni matrix/particle interface, which is in agreement with the experimental measurements. The results presented provide objective evidence of the effectiveness of gradient-enhanced crystal plasticity finite element analysis and demonstrate that GND coupling is required in order to capture strains and lattice rotations in regions of high heterogeneity.


2021 ◽  
Vol 7 (3) ◽  
pp. 117
Author(s):  
Murat Demiral ◽  
Anish Roy ◽  
Vadim V. Silberschmidt

In latest years small scale machining has been widely used in advanced engineering applications such as medical and optical devices, micro- and nano-electro-mechanical systems. In micromachining of metals, a depth of cut becomes usually smaller than an average crystal size of a polycrystalline structure; thus, the cutting process zone can be localized fully indoors of a single grain. Due to the crystallographic anisotropy, development of small scale machining models accounting for crystal plasticity are essential for a precise calculation of material removal under such circumstances. For this purpose, a 3D finite-element model of micro-cutting of a single grain was developed. A crystal-plasticity theory accounting for gradients of strain, implemented in ABAQUS/Explicit via a user-defined material subroutine VUMAT, was used in the computations. The deformation-induced lattice rotations in micro-cutting of a single crystal were analyzed extensively.


Materials ◽  
2019 ◽  
Vol 12 (3) ◽  
pp. 351
Author(s):  
Peitang Wei ◽  
Hao Zhou ◽  
Huaiju Liu ◽  
Caichao Zhu ◽  
Wei Wang ◽  
...  

The excellent properties of ultra-fine grained (UFG) materials are relevant to substantial grain refinement and the corresponding induced small grains delineated by high-angle grain boundaries. The present study aims to understand the grain refinement mechanism by examining the nickel single crystal processed by high pressure torsion (HPT), a severe plastic deformation method to produce UFG materials based upon crystal plasticity finite element (CPFEM) simulations. The predicted grain maps by the developed CPFEM model are capable of capturing the prominent characteristics associated with grain refinement in HPT. The evolution of the orientation of structural elements and the rotations of crystal lattices during the HPT process of the detected differently oriented grains are extensively examined. It has been found that there are mainly two intrinsic origins of lattice rotation which cause the initial single crystal to subdivide. The correlation between the crystallographic orientation changes and lattice rotations with the grain fragmentation are analyzed and discussed in detail based on the theory of crystal plasticity.


2012 ◽  
Vol 20 (4-6) ◽  
pp. 73-75
Author(s):  
Carsten Broese ◽  
Charalampos Tsakmakis

AbstractUp to now, models for single crystal plasticity predict unbounded lattice rotations under simple shear. Asaro et al. proposed a model that predicts bounded rotations as long as the viscosity parameters are appropriately chosen. In every case, ideal plasticity models imply unbounded lattice rotations. Hence, it leads to the question whether one can develop a single crystal plasticity theory exhibiting hardening effects, which can predict bounded lattice rotations dependent on the choice of the hardening parameters. It is shown that this is possible by assuming latent hardening to apply.


2018 ◽  
Author(s):  
Motoki Sakaguchi ◽  
Ryota Komamura ◽  
Mana Higaki ◽  
Xiaosheng Chen ◽  
Hirotsugu Inoue

Metals ◽  
2021 ◽  
Vol 11 (8) ◽  
pp. 1189
Author(s):  
Yingjue Xiong ◽  
Qinmeng Luan ◽  
Kailun Zheng ◽  
Wei Wang ◽  
Jun Jiang

During plastic deformation, the change of structural states is known to be complicated and indeterminate, even in single crystals. This contributes to some enduring problems like the prediction of deformed texture and the commercial applications of such material. In this work, plane strain compression (PSC) tests were designed and implemented on single crystal pure aluminum to reveal the deformation mechanism. PSC tests were performed at different strain rates under strain control in either one-directional or two-directional compression. The deformed microstructures were analyzed according to the flow curve and the electron back-scattered diffraction (EBSD) mappings. The effects of grain orientation, strain rate, and strain path on the deformation and mechanical response were analyzed. Experimental results revealed that the degree of lattice rotation of one-dimensional compression mildly dependents on cube orientation, but it is profoundly sensitive to the strain rate. For two-dimensional compression, the softening behavior is found to be more pronounced in the case that provides greater dislocations gliding freeness in the first loading. Results presented in this work give new insights into aluminum deformation, which provides theoretical support for forming and manufacturing of aluminum.


Sign in / Sign up

Export Citation Format

Share Document