scholarly journals Crystal plasticity analysis of micro-deformation, lattice rotation and geometrically necessary dislocation density

Author(s):  
F. P. E. Dunne ◽  
R. Kiwanuka ◽  
A. J. Wilkinson

A gradient-enhanced crystal plasticity model is presented that explicitly accounts for the evolution of the densities of geometrically necessary dislocations (GNDs) on individual slip systems of deforming crystals. The GND densities are fully coupled with the crystal slip rule. Application of the model to two distinct and technologically important crystal types, namely hcp Ti and ccp Ni, is given. For the hcp crystals, slip is permitted with a -type slip directions on basal, prismatic and pyramidal planes and c + a -type slip directions on pyramidal planes. First, a single crystal under four-point bending is simulated as the uniform strain gradient expected in the central span provides a good validation of the code. Then, uniaxial deformation of a model near- α Ti polycrystal has been analysed. The resulting distributions of GND densities that develop on the various slip system types have been compared with independent experimental observations. The model predicts that GND density on the c + a systems is approximately an order of magnitude lower than that for a -type systems in agreement with experiment. For the ccp case, slip is considered to take place on the <110>{111} slip systems. Thermal loading of a single-crystal nickel alloy sample containing carbide particles of size approximately 30 μm has been analysed. Detailed comparisons are presented between model predictions and results of high-resolution electron backscatter diffraction (EBSD) measurements of the micro-deformations, lattice rotations, curvatures and GND densities local to the nickel–carbide interface. Qualitatively, good agreement is achieved between the coupled and decoupled model elastic strains with the EBSD measurements, but lattice rotations and GND densities are quantitatively well predicted by the coupled crystal model but are less well captured by the decoupled model. The GND coupling is found to lead to reduced lattice rotations and plastic strains in the region of highest heterogeneity close to the Ni matrix/particle interface, which is in agreement with the experimental measurements. The results presented provide objective evidence of the effectiveness of gradient-enhanced crystal plasticity finite element analysis and demonstrate that GND coupling is required in order to capture strains and lattice rotations in regions of high heterogeneity.

2008 ◽  
Vol 72 (6) ◽  
pp. 1181-1199 ◽  
Author(s):  
C. D. Barrie ◽  
A. P. Boyle ◽  
S. F. Cox ◽  
D. J. Prior

AbstractA suite of experimentally deformed single-crystal pyrite samples has been investigated using electron backscatter diffraction (EBSD). Single crystals were loaded parallel to <100> or <110> and deformed at a strain rate of 10-5s-1, confining pressure of 300 MPa and temperatures of 600°C and 700°C. Although geometrically (Schmid factor) the {001}<100> slip system should not be activated in <100> loaded samples, lattice rotation and boundary trace analyses of the distorted crystals indicate this slip system is easier to justify. Determination of 75 MPa as the critical resolved shear stress (CRSS) for {001}<100> activation, in the <110> loaded crystals, suggests a crystal misalignment of ~5—15° in the <100> loaded crystals would be sufficient to activate the {001}<100> slip system. Therefore, {001}<100> is considered the dominant slip system in all of the single-crystal pyrite samples studied. Slip-system analysis of the experimentally deformed polycrystalline pyrite aggregates is consistent with the single-crystal findings, with the exception that {001}<11̄> also appears to be important, although less common than the {001}<100> slip system. The lack of crystal preferred orientation (CPO) development in the polycrystalline pyrite aggregates can be accounted for by the presence of two independent symmetrically equivalent slip systems more than satisfying the von Mises criterion.


2004 ◽  
Vol 71 (5) ◽  
pp. 713-723 ◽  
Author(s):  
Hongqiang Chen ◽  
Jeffrey W. Kysar ◽  
Y. Lawrence Yao

Electron backscatter diffraction (EBSD) is used to investigate crystal lattice rotation caused by plastic deformation during high-strain rate laser shock peening in single crystal aluminum and copper sample on 110¯ and (001) surfaces. New experimental methodologies are employed which enable measurement of the in-plane lattice rotation under approximate plane-strain conditions. Crystal lattice rotation on and below the microscale laser shock peened sample surface was measured and compared with the simulation result obtained from FEM analysis, which account for single crystal plasticity. The lattice rotation measurements directly complement measurements of residual strain/stress with X-ray micro-diffraction using synchrotron light source and it also gives an indication of the extent of the plastic deformation induced by the microscale laser shock peening.


2018 ◽  
Vol 941 ◽  
pp. 1474-1478
Author(s):  
Yelm Okuyama ◽  
Masaki Tanaka ◽  
Tetsuya Ohashi ◽  
Tatsuya Morikawa

The effect of the activated slip systems on the temperature dependence of yield stress was investigated in α-Ti by using crystal plasticity finite element method. A model for finite element analysis (FEA) was constructed based on experimental results. The displacement in FEA was applied up to the nominal strain of 4% which is the same strain as the experimental one. Stress-strain curves were obtained, which corresponds to experimental data taken every 50 K between 73 K and 673 K. The used material constants which are temperature dependent were elastic constants, and lattice friction stresses. The lattice friction stresses of basal slip systems were set to be higher than that of pyramidal slip systems at 73 K. Then, the lattice friction stresses were set to be closer as the temperature increases. It was found that the activation of slip systems is strong temperature dependent, and that the yield stress depends on the number of active slip systems.


1999 ◽  
Vol 31 (4) ◽  
pp. 249-261 ◽  
Author(s):  
S. To ◽  
W.B. Lee ◽  
C.Y. Chan

The orientation changes in the crystallographic textures of a diamond turned aluminium single crystal have been investigated. The X-ray pole figures were collected at various locations on the surfaces turned at high speed. In the central part of the turned surfaces, the pole figures revealed the presence of a thin deformed layer. Four sets of slip systems were found to operate to a very similar extent. However, as the distance from the centre increased, the operation of these four sets of slip systems varied and the textural changes were found to be increasingly affected by the cutting velocity. In a separate grooving experiment, electron back-scatter diffraction (EBSD) patterns were collected at various locations along the bottom part of the groove. These patterns revealed a lattice rotation on the machined surface which was induced by shearing along the cutting direction.


2021 ◽  
Vol 56 (18) ◽  
pp. 10905-10914
Author(s):  
Sergey N. Dub ◽  
Cetin Haftaoglu ◽  
Vitaliy M. Kindrachuk

AbstractThe onset of plasticity in a single crystal C60 fullerite was investigated by nanoindentation on the (111) crystallographic plane. The transition from elastic to plastic deformation in a contact was observed as pop-in events on loading curves. The respective resolved shear stresses were computed for the octahedral slip systems $$\langle{01}\overline{1}\rangle\left\{ {{111}} \right\}$$ ⟨ 01 1 ¯ ⟩ 111 , supposing that their activation resulted in the onset of plasticity. A finite element analysis was applied, which reproduced the elastic loading until the first pop-in, using a realistic geometry of the Berkovich indenter blunt tip. The obtained estimate of the C60 theoretical shear strength was about $${1}/{11}$$ 1 / 11 of the shear modulus on {111} planes. Graphical abstract


Sign in / Sign up

Export Citation Format

Share Document