scholarly journals Experimental and numerical investigation of open hole carbon fiber composite laminates under compression with three different stacking sequences

2019 ◽  
Vol 8 (3) ◽  
pp. 2957-2968 ◽  
Author(s):  
Song Zhou ◽  
Jinhua Zhang ◽  
Yi Sun ◽  
Kun Tian
2010 ◽  
Vol 150-151 ◽  
pp. 732-735 ◽  
Author(s):  
Chun Hua Zhang ◽  
Jin Bao Zhang ◽  
Mu Chao Qu ◽  
Jian Nan Zhang

Basalt fiber and carbon fiber hybrid with alternate stacking sequences reinforced epoxy composites have been developed to improve the toughness properties of conventional carbon fiber reinforced composite materials. For comparison, plain carbon fiber laminate composite and plain basalt fiber laminate composite have also been fabricated. The toughness properties of each laminate have been studied by an open hole compression test. The experimental results confirm that hybrid composites containing basalt fibers display 46% higher open hole compression strength than that of plain carbon fiber composites. It is indicated that the hybrid composite laminates are less sensitive to open hole compared with plain carbon fiber composite laminate and high toughness properties can be prepared by fibers' hybrid.


1995 ◽  
Vol 16 (4) ◽  
pp. 276-283 ◽  
Author(s):  
Luca Di Landro ◽  
Alberto Palonca ◽  
Giuseppe Sala

2021 ◽  
pp. 002199832110495
Author(s):  
Yinan Wang ◽  
Fu-Kuo Chang

This work presents numerical simulation methods to model the mechanical behavior of the multifunctional energy storage composites (MESCs), which consist of a stack of multiple thin battery layers reinforced with through-the-hole polymer rivets and embedded inside carbon fiber composite laminates. MESC has been demonstrated through earlier experiments on its exceptional behavior as a structural element as well as a battery. However, the inherent complex infrastructure of the MESC design has created significant challenges in simulation and modeling. A novel homogenization technique was adopted to characterize the multi-layer properties of battery material using physics-based constitutive equations combined with nonlinear deformation theories to handle the interface between the battery layers. Second, mechanical damage and failure modes among battery materials, polymer reinforcements, and carbon fiber-polymer interfaces were characterized through appropriate models and experiments. The model of MESCs has been implemented in a commercial finite element code in ABAQUS. A comparison of structural response and failure modes from numerical simulations and experimental tests are presented. The results of the study showed that the predictions of elastic and damage responses of MESCs at various loading conditions agreed well with the experimental data. © 2021


Sign in / Sign up

Export Citation Format

Share Document