scholarly journals Microstructural evolution and strengthening mechanisms in CrxMnFeNi high-entropy alloy

Author(s):  
Youyou Zhang ◽  
Huibin Wu ◽  
Xinpan Yu ◽  
Di Tang ◽  
Rui Yuan ◽  
...  
2019 ◽  
Author(s):  
V. Soni ◽  
Oleg N. Senkov, PhD ◽  
Jean-Philippe Couzinie, PhD ◽  
Yufeng Zheng, PhD ◽  
Bharat Gwalani, PhD ◽  
...  

Author(s):  
Lavanya Raman ◽  
Ameey Anupam ◽  
G. Karthick ◽  
Christopher C. Berndt ◽  
Andrew Siao Ming Ang ◽  
...  

2018 ◽  
Vol 928 ◽  
pp. 183-187 ◽  
Author(s):  
Khin Sandar Tun ◽  
Manoj Gupta

In this research study, two light weight multi-component high entropy alloys (HEAs) consisting of six constituent elements were synthesized. The high entropy alloy having a chemical composition of Mg35Al33Li15Zn7Ca5Y5(atomic pct.) had a density of 2.25 g/cm3, while the high entropy alloy having a composition of Mg35Al33Li15Zn7Ca5Cu5(atomic pct.) had a density of 2.27 g/cm3. The strategy of non-equiatomic composition, high entropy of mixing coupled with low density was applied in designing the alloy systems. Disintegrated melt deposition (DMD) technique was used to synthesize the materials and characterization studies were performed on as-cast materials. The present study emphasizes on examining and understanding the microstructural development in the two light weight high entropy alloys. The formation and presence of phases and microstructural evolution were studied by interchanging yttrium and copper. Microstructural observations revealed presence of multiple phases in the developed alloys and the simplification of the microstructure when copper is used instead of yttrium. Microhardness results revealed a significant increase in hardness of of both the HEAs (3.8 – 4.2 times) when compared to AZ31 commercial magnesium alloy.Keywords: High Entropy Alloy, Magnesium, Aluminum, Casting, Microstructure


Sign in / Sign up

Export Citation Format

Share Document