scholarly journals High strength and high ductility nano-Ni-Al2O3/A356 composites fabricated with nickel-plating and equal channel angle semi-solid extrusion (ECASE)

Author(s):  
Tan Wang ◽  
Xiaoqing Zuo ◽  
Yun Zhou ◽  
Jihua Tian ◽  
Songjiang Ran
Alloy Digest ◽  
1956 ◽  
Vol 5 (6) ◽  

Abstract DUCTALLOY is a high-carbon ferrous material having high strength, high ductility, toughness and machinability. It is supplied in three grades: pearlitic grade 80, ferritic grade 60, and austenitic grade A50. This datasheet provides information on composition, physical properties, hardness, elasticity, and tensile properties as well as fracture toughness and fatigue. It also includes information on high temperature performance as well as heat treating, machining, and joining. Filing Code: CI-14. Producer or source: American Brake Shoe Company.


Alloy Digest ◽  
1977 ◽  
Vol 26 (2) ◽  

Abstract Copper Alloy No. 165 is a copper-cadmium-tin alloy with low strength and high ductility in the annealed condition. In the hard-drawn condition, characterized by high strength and low ductility, it is used widely as an electrical conductor. This datasheet provides information on composition, physical properties, hardness, elasticity, and tensile properties as well as fatigue. It also includes information on corrosion resistance as well as forming, heat treating, machining, and joining. Filing Code: Cu-327. Producer or source: Copper and copper alloy mills.


Alloy Digest ◽  
1969 ◽  
Vol 18 (9) ◽  

Abstract IN-102 is a nickel-chromium-iron alloy designed for long service at temperatures up to 1300 F. It combines high strength and high ductility at the elevated temperatures with a high degree of structural stability. It is used for aerospace, power and steam turbine components. This datasheet provides information on composition, physical properties, hardness, elasticity, and tensile properties as well as creep. It also includes information on low and high temperature performance, and corrosion resistance as well as forming, heat treating, machining, joining, and surface treatment. Filing Code: Ni-147. Producer or source: International Nickel Company Inc..


Alloy Digest ◽  
1964 ◽  
Vol 13 (6) ◽  

Abstract Nivco 10 is a cobalt-base turbine alloy having a combination of high damping capacity, high strength and high ductility. It is a precipitation hardening alloy recommended for use at temperatures up to 1200 F, such as turbine blades. This datasheet provides information on composition, physical properties, elasticity, and tensile properties as well as fracture toughness, creep, and fatigue. It also includes information on forming, heat treating, machining, and joining. Filing Code: Co-37. Producer or source: Westinghouse Electric Corporation.


2020 ◽  
Author(s):  
O. Trudonoshyn ◽  
O. Prach ◽  
P. Randelzhofer ◽  
K. Durst ◽  
С. Körner

2015 ◽  
Vol 68 ◽  
pp. 94-104 ◽  
Author(s):  
Ravi Ranade ◽  
Victor C. Li ◽  
William F. Heard

2015 ◽  
Vol 1114 ◽  
pp. 3-8
Author(s):  
Nicolae Şerban ◽  
Doina Răducanu ◽  
Nicolae Ghiban ◽  
Vasile Dănuţ Cojocaru

The properties of ultra-fine grained materials are superior to those of corresponding conventional coarse grained materials, being significantly improved as a result of grain refinement. Equal channel angular pressing (ECAP) is an efficient method for modifying the microstructure by refining grain size via severe plastic deformation (SPD) in producing ultra-fine grained materials (UFG) and nanomaterials (NM). The grain sizes produced by ECAP processing are typically in the submicrometer range and this leads to high strength at ambient temperatures. ECAP is performed by pressing test samples through a die containing two channels, equal in cross-section and intersecting at a certain angle. The billet experiences simple shear deformation at the intersection, without any precipitous change in the cross-section area because the die prevents lateral expansion and therefore the billet can be pressed more than once and it can be rotated around its pressing axis during subsequent passes. After ECAP significant grain refinement occurs together with dislocation strengthening, resulting in a considerable enhancement in the strength of the alloys. A commercial AlMgSi alloy (AA6063) was investigated in this study. The specimens were processed for a number of passes up to nine, using a die channel angle of 110°, applying the ECAP route BC. After ECAP, samples were cut from each specimen and prepared for metallographic analysis. The microstructure of the ECAP-ed and as-received material was investigated using optical (OLYMPUS – BX60M) and SEM microscopy (TESCAN VEGA II – XMU). It was determined that for the as-received material the microstructure shows a rough appearance, with large grains of dendritic or seaweed aspect and with a secondary phase at grain boundaries (continuous casting structure). For the ECAP processed samples, the microstructure shows a finished aspect, with refined, elongated grains, also with crumbled and uniformly distributed second phase particles after a typical ECAP texture.


2016 ◽  
Vol 716 ◽  
pp. 13-21 ◽  
Author(s):  
Vladimir Stefanov Hristov ◽  
Kazunari Yoshida

In recent years, due to its low density and high strength/weight ratio, magnesium alloy wires has been considered for application in many fields, such as welding, electronics, medical field (for production of stents). But for those purposes, we need to acquire wires with high strength and ductility. For that we purpose we proposed alternate drawing method, which is supposed to highly decrease the shearing strain near the surface of the wire after drawing, by changing the direction of the wire drawing with each pass and thus acquiring high ductility wires.We have done research on the cold alternate drawing of magnesium alloy wires, by conducting wire drawing of several magnesium wires and testing their strength, hardness, structure, surface and also finite element analysis, we have proven the increase of ductility at the expense of some strength.In this research we are looking to further improve the quality of the drawn wires by examining the benefits of using diamond dies over tungsten carbine dies. Using the alternate drawing method reduces the strength of the drawn wires and thus lowering their drawing limit. By using diamond dies we are aiming to decrease the drawing stress and further increase the drawing limit of the alternate drawn wires and also improve the quality of the finishing surface of the wires. With this in mind we are aiming to produce a good quality wire with low diameter, high ductility, high strength and fine wire surface.


2016 ◽  
Vol 667 ◽  
pp. 179-188 ◽  
Author(s):  
Aiying Chen ◽  
Jiabin Liu ◽  
Hongtao Wang ◽  
Jian Lu ◽  
Y. Morris Wang

Sign in / Sign up

Export Citation Format

Share Document