scholarly journals Effect of Optimum Utilization of Silica Fume and Eggshell Ash to the Engineering Properties of Expansive Soil

Author(s):  
Muhammad Syamsul Imran Zaini ◽  
Muzamir Hasan ◽  
Ling Sin Yie ◽  
Khairil Azman Masri ◽  
Ramadhansyah Putra Jaya ◽  
...  
2021 ◽  
Vol 1895 (1) ◽  
pp. 012017
Author(s):  
Ahmed M Al-Khalili ◽  
Ahmed S Ali ◽  
Abbas J Al-Taie

2019 ◽  
Vol 8 (4) ◽  
pp. 1921-1926

Expansive soil implies low bearing capacity and high swelling property perhaps causes serious problems during construction includes low stability, non-uniform settlements and shear distribution. The soil stabilization is one such method to improve the process and it depends upon the soil condition and the nature of soil according to the desired requirements of footing. This study aims to increase the index and engineering properties of soil by addition of the natural fiber (sisal), lime and silica fume. Soil stabilization by lime involves the admixture in the form of calcium oxide or calcium hydroxide to the soil and silica fume as an industrial waste by product acts as a pore filling material. The project is economically viable because the stabilizing materials are easily available and less cost. This project is also analyzed by using the PLAXIS software.


Soil is the foundation material which supports loads from an overlying structure; it mainly consists of minerals, organic matter, liquids etc. In India the soil most present is Clay, using which the construction of sub grade is deemed problematic. as Clayey soils are expansive soils. The problem of using clayey soil for civil engineering constructions has been observed since early ages.. On the basis of type of soil, soil stabilization is undertaken and is a major technology in construction engineering. Soil strengthening refers to the process of enhancing physical, chemical and mechanical properties of soil to maintain its stability. In this investigation, an attempt has been made to improve the engineering properties of locally available clayey soil near Mahabalipuram by making a composite mix with silica fume and wood ash with equal composition in various proportions. Addition of such materials will increase the physical as well as chemical properties of the soil. study, experimental investigations are carried out to study the beneficial effects of stabilizing Clay soil using silica fume and wood ash with 3%, 5% and 7%. The tests were conducted in order to evaluate the improvement in strength characteristics of the sub graded soil. The parameters tested included the Atterberg limits, Modified Proctor Density, California bearing ratio (CBR). Results showed that the geotechnical parameters of clay soil improved substantially by the addition of wood husk ash and silica fume


Author(s):  
Nitin Tiwari ◽  
Neelima Satyam

Expansive soil shows dual swell-shrink which is not suitable for the construction. Several mitigating techniques exist to counteract the problem promulgate by expansive clayey soils. This paper explored the penitential mecho-chemical reinforcement of expansive clayey soil to mitigate the effect of upward swelling pressure and heave. The polypropylene fiber is randomly distributed in the soil for mechanical stabilization, and the industrial residual silica fume is used as a chemical stabilizer. The experimental analysis is made in three phases which involved the tests on mechanical reinforced expansive soil using randomly distributed polypropylene fibers with different percentages (0.25%, 0.50%, and 1.00%), and 12mm length. The second phase of experiments carried out on chemical stabilized expansive soil with different percentages (2%, 4% and 8%) of silica and next phase of the experimental focused in the combination of mecho-chemical stabilization of the expansive soil with different combination of silica (i.e., 2%, 4% and 8%) and polypropylene fibers (i.e., 0.25%, 0.50% and 1.00%). Maximum dry density (MDD), optimum moisture content (OMC), liquid limit (LL), plastic limit (PL), plastic index (PI) grain size, and constant volume swelling pressure test were performed on unreinforced and reinforced expansive soil to investigate the effect of polypropylene fiber and silica fume on the engineering properties of expansive clayey soil. The experimental results illustrate that the inclusion of polypropylene fiber has a significant effect on the upward swelling pressure and expansion property of expansive soil. The reduction in the upward swelling pressure and expansion is a function of fiber content. These results also indicated that the use of silica fume caused a reduction in upward swelling potential, and its effect was considerably more than the influence of fiber.


2020 ◽  
Vol 33 ◽  
pp. 5035-5040
Author(s):  
Pratyasha Singh ◽  
Hemanta Kumar Dash ◽  
Sandeep Samantaray

Geosciences ◽  
2019 ◽  
Vol 9 (9) ◽  
pp. 377 ◽  
Author(s):  
Nitin Tiwari ◽  
Neelima Satyam

Expansive soil shows dual swell–shrink which is not suitable for construction. Several mitigating techniques exist to counteract the problem promulgated by expansive clayey soils. This paper explored the potential mecho-chemical reinforcement of expansive clayey soil to mitigate the effect of upward swelling pressure and heave. The polypropylene fiber is randomly distributed in the soil for mechanical stabilization, and the industrial residual silica fume is used as a chemical stabilizer. The experimental analysis was made in three phases which involved tests on mechanically-reinforced expansive soil, using randomly distributed polypropylene fibers with different percentages (0.25%, 0.50%, and 1.00%), and which were 12 mm length. The second phase of experiments was carried out on chemical stabilized expansive soil with different percentages (2%, 4%, and 8%) of silica, and the next phase of the experiment focused on the combination of mecho-chemical stabilization of the expansive soil with different combinations of silica (i.e., 2%, 4%, and 8%) and polypropylene fibers (i.e., 0.25%, 0.50%, and 1.00%). Maximum dry density (MDD), optimum moisture content (OMC), liquid limit (LL), plastic limit (PL), plastic index (PI), grain size, and constant volume swelling pressure tests were performed on unreinforced and reinforced expansive soil, to investigate the effects of polypropylene fiber and silica fume on the engineering properties of expansive clayey soil. The experimental results illustrate that the inclusion of polypropylene fiber has a significant effect on the upward swelling pressure and expansion property of expansive soil. The reduction in the upward swelling pressure and expansion is a function of fiber content. These results also indicated that the use of silica fume caused a reduction in upward swelling potential, and its effect was considerably more than the influence of fiber.


2014 ◽  
Vol 501-504 ◽  
pp. 359-367
Author(s):  
Feng Zhou ◽  
Kai Zhang ◽  
Ying Chun Tang

This paper summarizes and analyzes the basic concepts and ecological protection mechanism for expansion geotechnical slope failure mechanism and the resulting impact on the shallow, traction engineering properties such as analysis, proposed ecological slope of expansive soil slope mechanism of action: vegetation system by improving internal slope soil moisture and temperature changes affect the atmosphere and thus effectively reduce the depth. Vegetation root through reinforced anchoring, delay time and improving soil hydration ductility such as the role played good strength enhancement. Vegetation formation can effectively improve the damaged outer slope interface morphology, to restore the ecological environment and landscape effect. Integrating the past experience on expansive soil slope treatment, this paper provide a slope treatment method used in Nanning metro Tunli section, these will provide reference for the expansive soil slope ecological management.


Sign in / Sign up

Export Citation Format

Share Document