scholarly journals In situ observation of solidification velocity and refined structure transformation in nonequilibrium solidification of highly undercooled and single-phase alloys

Author(s):  
Yukang An ◽  
Xiaolong Xu ◽  
Yuhong Zhao ◽  
Ruopeng Lu ◽  
Ruifeng Dong ◽  
...  
2019 ◽  
Vol 5 (2) ◽  
pp. 29 ◽  
Author(s):  
Nicholas Derimow ◽  
Louis Santodonato ◽  
Benjamin MacDonald ◽  
Bryan Le ◽  
Enrique Lavernia ◽  
...  

Real-time neutron imaging was utilized to produce a movie-like series of radiographs for in-situ observation of the remixing of liquid state immiscibility that occurs in equiatomic CoCrCu with the addition of Ni. A previous neutron imaging study demonstrated that liquid state immiscibility can be observed in-situ for the equiatomic CoCrCu alloy. In this follow-up study, equiatomic buttons of CoCrCu were placed alongside small Ni buttons inside an alumina crucible in a high-temperature vacuum furnace. The mass of the Ni buttons was specifically selected such that when melted in the same crucible as the CoCrCu buttons, the overall composition would become equiatomic CoCrCuNi. Neutron imaging was simultaneously carried out to capture 10 radiographs in 20 °C steps from 1000 °C to 1500 °C and back down to 1000 °C. This, in turn, produced a movie-like series of radiographs that allow for the observation of the buttons melting, the transition from immiscible to miscible as Ni is alloyed into the CoCrCu system, and solidification. This novel imaging process showed the phase-separated liquids remixing into a single-phase liquid when Ni dissolves into the melt, which makes this technique crucial for understanding the liquid state behavior of these complex alloy systems. As metals are not transparent to X-ray imaging techniques at this scale, neutron imaging of melting and solidification allows for the observation of liquid state phase changes in real time. Thermodynamic calculations of the isopleth for CoCrCuNix were carried out to compare the observed results to the predictions resulting from the current Thermo-Calc TCHEA3 thermodynamic database. The calculations show a very good agreement with the experimental results, as the calculations indicate that the CoCrCuNix alloy solidifies from a single-phase liquid when x ≥ 0.275, which is close to the nominal concentration of the CoCrCuNi alloy (x = 0.25). The neutron imaging shows that the solidification of CoCrCuNi results from a single-phase liquid. This is evident as no changes in the neutron attenuation were observed during the solidification of the CoCrCuNi alloy.


2017 ◽  
Vol 29 (26) ◽  
pp. 1700236 ◽  
Author(s):  
Li Zhong ◽  
Yang Liu ◽  
Wei-Qiang Han ◽  
Jian Yu Huang ◽  
Scott X. Mao

Author(s):  
R. T. K. Baker ◽  
R. D. Sherwood

The catalytic gasification of carbon at high temperature by microscopic size metal particles is of fundamental importance to removal of coke deposits and conversion of refractory hydrocarbons into fuels and chemicals. The reaction of metal/carbon/gas systems can be observed by controlled atmosphere electron microscopy (CAEM) in an 100 KV conventional transmission microscope. In the JEOL gas reaction stage model AGl (Fig. 1) the specimen is positioned over a hole, 200μm diameter, in a platinum heater strip, and is interposed between two apertures, 75μm diameter. The control gas flows across the specimen and exits through these apertures into the specimen chamber. The gas is further confined by two apertures, one in the condenser and one in the objective lens pole pieces, and removed by an auxiliary vacuum pump. The reaction zone is <1 mm thick and is maintained at gas pressure up to 400 Torr and temperature up to 1300<C as measured by a Pt-Pt/Rh 13% thermocouple. Reaction events are observed and recorded on videotape by using a Philips phosphor-television camera located below a hole in the center of the viewing screen. The overall resolution is greater than 2.5 nm.


Author(s):  
R-R. Lee

Partially-stabilized ZrO2 (PSZ) ceramics have considerable potential for advanced structural applications because of their high strength and toughness. These properties derive from small tetragonal ZrO2 (t-ZrO2) precipitates in a cubic (c) ZrO2 matrix, which transform martensitically to monoclinic (m) symmetry under applied stresses. The kinetics of the martensitic transformation is believed to be nucleation controlled and the nucleation is always stress induced. In situ observation of the martensitic transformation using transmission electron microscopy provides considerable information about the nucleation and growth aspects of the transformation.


Author(s):  
S. Hagège ◽  
U. Dahmen ◽  
E. Johnson ◽  
A. Johansen ◽  
V.S. Tuboltsev

Small particles of a low-melting phase embedded in a solid matrix with a higher melting point offer the possibility of studying the mechanisms of melting and solidification directly by in-situ observation in a transmission electron microscope. Previous studies of Pb, Cd and other low-melting inclusions embedded in an Al matrix have shown well-defined orientation relationships, strongly faceted shapes, and an unusual size-dependent superheating before melting.[e.g. 1,2].In the present study we have examined the shapes and thermal behavior of eutectic Pb-Cd inclusions in Al. Pb and Cd form a simple eutectic system with each other, but both elements are insoluble in solid Al. Ternary alloys of Al (Pb,Cd) were prepared from high purity elements by melt spinning or by sequential ion implantation of the two alloying additions to achieve a total alloying addition of up to lat%. TEM observations were made using a heating stage in a 200kV electron microscope equipped with a video system for recording dynamic behavior.


Author(s):  
K. Fukushima ◽  
N. Kohyama ◽  
A. Fukami

A film-sealed high resolution environmental cell(E.C) for observing hydrated materials had been developed by us(l). Main specification of the E.C. is as follows: 1) Accelerated voltage; 100 kV. 2) Gas in the E.C.; saturated water vapour with carrier gas of 50 Torr. 3) Thickness of gas layer; 50 μm. 4) Sealing film; evaporated carbon film(20 nm thick) with plastic microgrid. 5) Resolving power; 1 nm. 6) Transmittance of electron beam; 60% at 100 kV. The E.C. had been successfully applied to the study of hydrated halloysite(2) (3). Kaolin minerals have no interlayer water and are basically non-expandable but form intercalation compounds with some specific chemicals such as hydrazine, formamide and etc. Because of these compounds being mostly changed in vacuum, we tried to reveal the structure changes between in wet air and in vacuum of kaolin minerals intercalated with hydrazine and of hydrated state of montmori1lonite using the E.C. developed by us.


2013 ◽  
Vol 133 (12) ◽  
pp. 350-357
Author(s):  
Yuta Nakashima ◽  
Ryo Monji ◽  
Katsuya Sato ◽  
Kazuyuki Minami

2012 ◽  
Vol 19 (3) ◽  
pp. 583-592 ◽  
Author(s):  
Yinke Dou ◽  
Xiaomin Chang

Abstract Ice thickness is one of the most critical physical indicators in the ice science and engineering. It is therefore very necessary to develop in-situ automatic observation technologies of ice thickness. This paper proposes the principle of three new technologies of in-situ automatic observations of sea ice thickness and provides the findings of laboratory applications. The results show that the in-situ observation accuracy of the monitor apparatus based on the Magnetostrictive Delay Line (MDL) principle can reach ±2 mm, which has solved the “bottleneck” problem of restricting the fine development of a sea ice thermodynamic model, and the resistance accuracy of monitor apparatus with temperature gradient can reach the centimeter level and research the ice and snow substance balance by automatically measuring the glacier surface ice and snow change. The measurement accuracy of the capacitive sensor for ice thickness can also reach ±4 mm and the capacitive sensor is of the potential for automatic monitoring the water level under the ice and the ice formation and development process in water. Such three new technologies can meet different needs of fixed-point ice thickness observation and realize the simultaneous measurement in order to accurately judge the ice thickness.


2020 ◽  
Vol 13 (10) ◽  
pp. 105501
Author(s):  
Kuan-Kan Hu ◽  
Kensaku Maeda ◽  
Keiji Shiga ◽  
Haruhiko Morito ◽  
Kozo Fujiwara

Sign in / Sign up

Export Citation Format

Share Document