Microstructural homogeneity and mechanical behavior of a selective laser melted Ti-35Nb alloy produced from an elemental powder mixture

2021 ◽  
Vol 61 ◽  
pp. 221-233 ◽  
Author(s):  
Jincheng Wang ◽  
Yujing Liu ◽  
Chirag Dhirajlal Rabadia ◽  
Shun-Xing Liang ◽  
Timothy Barry Sercombe ◽  
...  
2014 ◽  
Vol 490-491 ◽  
pp. 38-42
Author(s):  
Yu Chen ◽  
Yang Yu ◽  
Wen Cong Zhan ◽  
Er De Wang

Ni-30wt%Fe elemental power mixture was mechanically milled under argon atmosphere for variuos times up to 25h.The evolution of Ni-Fe alloying during milling and the microstructure of the as-milled powders were characterized by XRD, EPMA (electron probe microanalysis), SEM and TEM, respectively. The results show that nanocrystalline Ni (Fe) supersaturated solid solution alloy powders with 30wt. % Fe in composition can be synthesized by mechanical milling of the elemental powder mixture. Both the content of Fe dissolved and the microstrain developed in the as-synthesized Ni (Fe) solid solution phase increase, while the crystallite size decreases, steadily with increasing milling time. In particular, the Ni-30wt%Fe alloy powders obtained by 25h milling consist of a single Ni (Fe) supersaturated solid solution phase with average crystallite size of about 15nm and accumulated microstrain as high as 1.12%. DSC tests show that the nanocrystalline Ni-30wt%Fe alloy powders have a lower melting temperature than the elemental powder mixture, attributed to the unique Ni (Fe) solid solution phase structure, the nanocrystallization, and the high strain energy.


2020 ◽  
Vol 299 ◽  
pp. 646-651
Author(s):  
Igor Polozov ◽  
Vadim Sufiiarov ◽  
Anatoliy Popovich

This paper presents the results of the study of Selective Laser Melting (SLM) process for the in-situ synthesis of Ti-6Al-4V alloy from elemental powder mixture. Elemental spherical powders of Ti, Al and V were used to prepare a powder mixture, and then bulk specimens were produced by SLM using different process parameters. The effects of SLM process parameters on samples’ relative density, their chemical composition, the formed microstructure and microhardness before and after heat treatment have been studied. It was shown that volume energy density during the SLM process significantly effects the microstructure and microhardness of Ti-6Al-4V obtained from elemental powders. The difference in microstructure morphology and microhardness remains after heat treatment.


1994 ◽  
Vol 31 (1) ◽  
pp. 57-62 ◽  
Author(s):  
In-Sung Lee ◽  
S.K. Hwang ◽  
W.K. Park ◽  
J.H. Lee ◽  
D.H. Park ◽  
...  

Sign in / Sign up

Export Citation Format

Share Document