Big data and stream processing platforms for Industry 4.0 requirements mapping for a predictive maintenance use case

2020 ◽  
Vol 54 ◽  
pp. 138-151 ◽  
Author(s):  
Radhya Sahal ◽  
John G. Breslin ◽  
Muhammad Intizar Ali
Sensors ◽  
2021 ◽  
Vol 21 (3) ◽  
pp. 694
Author(s):  
Radhya Sahal ◽  
Saeed H. Alsamhi ◽  
John G. Breslin ◽  
Muhammad Intizar Ali

Forestry 4.0 is inspired by the Industry 4.0 concept, which plays a vital role in the next industrial generation revolution. It is ushering in a new era for efficient and sustainable forest management. Environmental sustainability and climate change are related challenges to promote sustainable forest management of natural resources. Internet of Forest Things (IoFT) is an emerging technology that helps manage forest sustainability and protect forest from hazards via distributing smart devices for gathering data stream during monitoring and detecting fire. Stream processing is a well-known research area, and recently, it has gained a further significance due to the emergence of IoFT devices. Distributed stream processing platforms have emerged, e.g., Apache Flink, Storm, and Spark, etc. Querying windowing is the heart of any stream-processing platform which splits infinite data stream into chunks of finite data to execute a query. Dynamic query window-based processing can reduce the reporting time in case of missing and delayed events caused by data drift.In this paper, we present a novel dynamic mechanism to recommend the optimal window size and type based on the dynamic context of IoFT application. In particular, we designed a dynamic window selector for stream queries considering input stream data characteristics, application workload and resource constraints to recommend the optimal stream query window configuration. A research gap on the likelihood of adopting smart IoFT devices in environmental sustainability indicates a lack of empirical studies to pursue forest sustainability, i.e., sustainable forestry applications. So, we focus on forest fire management and detection as a use case of Forestry 4.0, one of the dynamic environmental management challenges, i.e., climate change, to deliver sustainable forestry goals. According to the dynamic window selector’s experimental results, end-to-end latency time for the reported fire alerts has been reduced by dynamical adaptation of window size with IoFT stream rate changes.


2021 ◽  
Vol 11 (8) ◽  
pp. 3438
Author(s):  
Jorge Fernandes ◽  
João Reis ◽  
Nuno Melão ◽  
Leonor Teixeira ◽  
Marlene Amorim

This article addresses the evolution of Industry 4.0 (I4.0) in the automotive industry, exploring its contribution to a shift in the maintenance paradigm. To this end, we firstly present the concepts of predictive maintenance (PdM), condition-based maintenance (CBM), and their applications to increase awareness of why and how these concepts are revolutionizing the automotive industry. Then, we introduce the business process management (BPM) and business process model and notation (BPMN) methodologies, as well as their relationship with maintenance. Finally, we present the case study of the Renault Cacia, which is developing and implementing the concepts mentioned above.


Author(s):  
Renan Bonnard ◽  
Márcio Da Silva Arantes ◽  
Rodolfo Lorbieski ◽  
Kléber Magno Maciel Vieira ◽  
Marcelo Canzian Nunes

Sign in / Sign up

Export Citation Format

Share Document