Review the impact of nanoparticles on the thermodynamics and kinetics of gas hydrate formation

2018 ◽  
Vol 55 ◽  
pp. 452-465 ◽  
Author(s):  
Omar Nashed ◽  
Behzad Partoon ◽  
Bhajan Lal ◽  
Khalik M. Sabil ◽  
Azmi Mohd Shariff
Processes ◽  
2020 ◽  
Vol 8 (1) ◽  
pp. 124 ◽  
Author(s):  
Pandey ◽  
Daas ◽  
Solms

In this study, the kinetics of flue gas hydrate formation in bulk water in the presence of selected amino acids and surfactants are investigated. Four amino acids (3000 ppm) are selected based on different hydropathy index. Constant-ramping and isothermal experiments at 120 bar pressure and 1 °C temperature are carried out to compare their hydrate promotion capabilities with surfactant sodium dodecyl sulfate (SDS) (500–3000 ppm) and water. Based on experimental results, we report the correlation between hydrate promotion capability of amino acids and their hydrophobicity. Hydrophobic amino acids show stronger flue gas hydrate promotion capability than water and hydrophilic amino acids. We discuss the controlling mechanisms to differentiate between promoters and inhibitors’ roles among the amino acids. Between 2000–3000 ppm concentrations, hydrophobic amino acids have near similar promotion capabilities as SDS. This research highlights the potential use of amino acids as promoters or inhibitors for various applications.


2020 ◽  
Author(s):  
Aliakbar Hassanpouryouzband ◽  
Katriona Edlmann ◽  
Jinhai Yang ◽  
Bahman Tohidi ◽  
Evgeny Chuvilin

<p>Power plants emit large amounts of carbon dioxide into the atmosphere primarily through the combustion of fossil fuels, leading to accumulation of increased greenhouse gases in the earth’s atmosphere. Global climate changing has led to increasing global mean temperatures, particularly over the poles, which threatens to melt gas hydrate reservoirs, releasing previously trapped methane and exacerbating the situation.  Here we used gas hydrate-based technologies to develop techniques for capturing and storing CO<sub>2</sub> present in power plant flue gas as stable hydrates, where CO<sub>2</sub> replaces methane within the hydrate structure. First, we experimentally measured the thermodynamic properties of various flue gases, followed by modelling and tuning the equations of state. Second, we undertook proof of concept investigations of the injection of CO2 flue gas into methane gas hydrate reservoirs as an option for economically sustainable production of natural gas as well as carbon capture and storage. The optimum injection conditions were found and reaction kinetics was investigated experimentally under realistic conditions. Third, the kinetics of flue gas hydrate formation for both the geological storage of CO<sub>2</sub> and the secondary sealing of CH<sub>4</sub>/CO<sub>2</sub> release in one simple process was investigated, followed by a comprehensive investigation of hydrate formation kinetics using a highly accurate in house developed experimental apparatus, which included an assessment of the gas leakage risks associated with above processes.  Finally, the impact of the proposed methods on permeability and mechanical strength of the geological formations was investigated.</p>


2021 ◽  
Author(s):  
Khalik Mohamad Sabil ◽  
Omar Nashed ◽  
Bhajan Lal ◽  
Khor Siak Foo

Abstract Nanofluids are known of having the capability to increase heat and mass transfer and their suitability to be used as kinetic gas hydrate promoters have been recently investigated. They have favorable properties such as high thermal conductivity, large surface area, recyclable, ecofriendly, and relatively cheap that are favorable for kinetic gas hydrate promoters. However, the nanomaterials face challenges related to their stability in the base fluid. Therefore, it is crucial to investigate the impact of surfactant free nanofluid on hydrate formation and dissociation kinetics. In this work, COOH-MWCNT suspended in water is used to study the effect of surfactant free nanofluid on CO2 hydrates formation kinetic and stability. Kinetic study on CO2 hydrates formation as well as self-preservation are conducted in a stirred tank reactor. The kinetic experiments are carried out at 2.7 MPa and 274.15 K. The induction time, initial gas consumption rate, half-completion time t50, semi completion time t95 are measured to evaluate the effect of COOH-MWCNT. Furthermore, the dissociation rate was calculated to assess the impact of COOH-MWCNT on self-preservation at 271.15 K and atmospheric pressure. The results are compared with that of sodium dodecyl sulphate (SDS). The study of CO2 hydrates formation kinetic shows that the induction time is not affected by COOH-MWCNT. The impact of nanofluid is more pronounced during the hydrate growth. The initial formation rate is the highest at 0.01 wt% of COOH-MWCNT whereas 0.01 and 0.03 wt% shows the same and shortest t50. However, t95 found to be decreased with increasing the concentration. The effect of COOH-MWCNT is attributed to the strong functional group. Self-preservation results shows CO2 hydrates are less stable in the presence of COOH-MWCNT. The result of this work may provide significant finding that can be used to developed kinetic gas hydrate promoter based on nanofluid that work better than SDS to eliminate gas hydrate formation in oil and gas pipeline.


Fuel ◽  
2017 ◽  
Vol 209 ◽  
pp. 85-95 ◽  
Author(s):  
WuChang Wang ◽  
Kai Jiang ◽  
YuXing Li ◽  
ZhengZhuo Shi ◽  
GuangChun Song ◽  
...  

Author(s):  
Remi-Erempagamo T. Meindinyo ◽  
Thor Martin Svartås

The thermodynamics and kinetics of clathrate hydrate formation processes are topics of high scientific interest, especially in the petroleum industry. Researchers have made efforts at understanding the underlying processes that explicate the macroscopic observations from experiments and other research methods of gas hydrate formation. To achieve this, they have employed theories founded upon force related intermolecular interactions. Some of the theories and concepts employed include hydrogen bonding, the Leonard Jones force principle, and steric interactions. This paper gives a brief review of how these intermolecular interaction principles have been understood, and used as tools, in explaining the inaccessible microscopic processes, that characterize clathrate hydrate formation. It touches upon nucleation, growth, and inhibition processes.


Sign in / Sign up

Export Citation Format

Share Document