Propagation behavior of hydraulic fracture across the coal-rock interface under different interfacial friction coefficients and a new prediction model

2019 ◽  
Vol 68 ◽  
pp. 102894 ◽  
Author(s):  
Yulong Jiang ◽  
Haojie Lian ◽  
Vinh Phu Nguyen ◽  
Weiguo Liang
2021 ◽  
Vol 2021 ◽  
pp. 1-10
Author(s):  
Fan Zhang ◽  
Yang Tang

Multistaged fracturing in the roof of outburst coal seam is an efficient and creative technology for coalbed methane (CBM) drainage, which can effectively improve the permeability of coal seam. To reveal its mechanism of permeability enhancement, the effect of coal-rock interface on multistaged fracturing in the roof of outburst coal seam was simulated and discussed in this paper. Firstly, the lithological difference between outburst coal seam and roof was compared, and the concept and significance of multistaged fracturing in the roof of outburst coal seam were explained. Then, the mechanical conditions of multiple fractures in the roof traversing coal-rock interface were analyzed. The effects of mechanical parameters on multiple fractures were numerically simulated. The results indicated that fracturing borehole in adjacent rocks of outburst coal seam is much easier to drill and maintain gas drainage. Considering gas drainage efficiency and avoiding being blocked by coal fines, multistaged fracturing borehole is generally drilled in the stable rock stratum of roof. Whether the multiple fractures in the roof can traverse coal-rock interface is related to mechanical parameters of coal and rock, friction factor of coal-rock interface, angle between horizontal profile and coal-rock interface, cementing strength of coal-rock interface, minimum horizontal stress, and other factors. Higher fracturing fluid pressure contributes to propagating from the reservoir with low elastic modulus to the one with high elastic modulus for hydraulic fracture. Hydraulic fracture is more likely to propagate in the rock stratum with high brittleness index. The research results can improve multistaged fracturing theory and provide technological support for field test.


2012 ◽  
Vol 220-223 ◽  
pp. 1279-1283 ◽  
Author(s):  
Li Hong Dong ◽  
Peng Bing Zhao

The coal-rock interface recognition is one of the critical automated technologies in the fully mechanized mining face. The poor working conditions underground result in the seriously polluted edge information of the coal-rock interface, which affects the positioning precision of the shearer drum. The Gaussian filter parameters and the high-low thresholds are difficult to select in the traditional Canny algorithm, which causes the information loss of gradual edge and the phenomenon of false edge. Consequently, this paper presents an improved Canny edge detection algorithm, which adopts the adaptive median filtering algorithm to calculate the thresholds of Canny algorithm according to the grayscale mean and variance mean. This algorithm can protect the image edge details better and can restrain the blurred image edge. Experimental results show that this algorithm has improved the edge extraction effect under the case of noise interference and improved the detection precision and accuracy of the coal-rock image effectively.


2021 ◽  
Author(s):  
Chenxu Luo ◽  
Junbei Qaio

Abstract Shearer provide an effect solution for mining coal, and the cutting performance of pick largely accouts for the ability of a shearer and mining performance. We conducted pick cutting coal experiments in different seam forms on the coal and rock cutting teasted. According to the rotary cutting mechanical model of single pick cutting coal seam, combined with the strength condition of coal seam and coal-rock interface, the rotary cutting mechanical model of pick cutting coal seam with coal-rock interface is established. The stress strain and strength condition of the area in and around the interface are analyzed based on the coal-rock interface crushing theory, which provides basis for further research on the cutting mechanical model of single pick crossing the coal-rock interface. According to the analysis on the ampulitude domain, the phenomenon that force increment between the pick cutting rock and uniform coal seam linearly increases with the increase of compressive strength difference between coal seam and coal-rock interface, and the load fluctuation keep a positive correlation with the compressive strength. Analysis on the signals of the pick cutting coal seam with coal and rock interface at different conditions shows that some basic properties of the cutting load changes over times. In addition, the coal seam with coal-rock interface appears larger impact load and other time-domain characteristics.


SPE Journal ◽  
2018 ◽  
Vol 24 (02) ◽  
pp. 681-697 ◽  
Author(s):  
Zheng Sun ◽  
Juntai Shi ◽  
Keliu Wu ◽  
Tao Zhang ◽  
Dong Feng ◽  
...  

Summary Low-permeability coalbed-methane (CBM) reservoirs possess unique pressure-propagation behavior, which can be classified further as the expansion characteristics of the drainage area and the desorption area [i.e., a formation in which the pressure is lower than the initial formation pressure and critical-desorption pressure (CDP), respectively]. Inevitably, several fluid-flow mechanisms will coexist in realistic coal seams at a certain production time, which is closely related to dynamic pressure and saturation distribution. To the best of our knowledge, a production-prediction model for CBM wells considering pressure-propagation behavior is still lacking. The objective of this work is to perform extensive investigations into the effect of pressure-propagation behavior on the gas-production performance of CBM wells. First, the pressure-squared approach is used to describe the pressure profile in the desorption area, which has been clarified as an effective-approximation method. Also, the pressure/saturation relationship that was developed in our previous research is used; therefore, saturation distribution can be obtained. Second, an efficient iteration algorithm is established to predict gas-production performance by combining a new gas-phase-productivity equation and a material-balance equation. Finally, using the proposed prediction model, we shed light on the optimization method for production strategy regarding the entire production life of CBM wells. Results show that the decrease rate of bottomhole pressure (BHP) should be slow at the water single-phase-flow stage, fast at the early gas/water two-phase-flow stage, and slow at the late gas/water two-phase-flow stage, which is referred to as the slow/fast/slow (SFS) control method. Remarkably, in the SFS control method, the decrease rate of the BHP at each period can be quantified on the basis of the proposed prediction model. To examine the applicability of the proposed SFS method, it is applied to an actual CBM well in Hancheng Field, China, and it enhances the cumulative gas production by a factor of approximately 1.65.


Sign in / Sign up

Export Citation Format

Share Document