Pressure-dependent flow characteristics of proppant pack systems during well shut-in and the impact of fines invasion

2021 ◽  
Vol 96 ◽  
pp. 104251
Author(s):  
M.A.A. Ahamed ◽  
M.S.A. Perera
Author(s):  
Nicholas Goodman ◽  
Brian J Leege ◽  
Peter E Johnson

Exposing students to hands-on experiments has been a common approach to illustrating complex physical phenomena that have been otherwise modelled solely mathematically. Compressible, isentropic flow in a duct is an example of such a phenomenon, and it is often demonstrated via a de Laval nozzle experiment. We have improved an existing converging/diverging nozzle experiment so that students can modify the location of the normal shock that develops in the diverging portion to better understand the relationship between the shock and the pressure. We have also improved the data acquisition system for this experiment and explained how visualisation of the standing shock is now possible. The results of the updated system demonstrate that the accuracy of the isentropic flow characteristics has not been lost. Through pre- and post-laboratory quizzes, we show the impact on student learning as well.


2020 ◽  
Vol 32 (6) ◽  
pp. 1165-1177
Author(s):  
Yan-fen Geng ◽  
Hua-qiang Guo ◽  
Xing Ke

Author(s):  
Jiali Zhou ◽  
Haris N. Koutsopoulos

The transmission risk of airborne diseases in public transportation systems is a concern. This paper proposes a modified Wells-Riley model for risk analysis in public transportation systems to capture the passenger flow characteristics, including spatial and temporal patterns, in the number of boarding and alighting passengers, and in number of infectors. The model is used to assess overall risk as a function of origin–destination flows, actual operations, and factors such as mask-wearing and ventilation. The model is integrated with a microscopic simulation model of subway operations (SimMETRO). Using actual data from a subway system, a case study explores the impact of different factors on transmission risk, including mask-wearing, ventilation rates, infectiousness levels of disease, and carrier rates. In general, mask-wearing and ventilation are effective under various demand levels, infectiousness levels, and carrier rates. Mask-wearing is more effective in mitigating risks. Impacts from operations and service frequency are also evaluated, emphasizing the importance of maintaining reliable, frequent operations in lowering transmission risks. Risk spatial patterns are also explored, highlighting locations of higher risk.


2021 ◽  
Vol 13 (10) ◽  
pp. 5688
Author(s):  
Jangyoul You ◽  
Kipyo You ◽  
Minwoo Park ◽  
Changhee Lee

In this paper, the air flow characteristics and the impact of wind power generators were analyzed according to the porosity and height of the parapet installed in the rooftop layer. The wind speed at the top was decreasing as the parapet was installed. However, the wind speed reduction effect was decreasing as the porosity rate increased. In addition, the increase in porosity significantly reduced turbulence intensity and reduced it by up to 40% compared to no railing. In the case of parapets with sufficient porosity, the effect of reducing turbulence intensity was also increased as the height increased. Therefore, it was confirmed that sufficient parapet height and high porosity reduce the effect of reducing wind speed by parapets and significantly reducing the turbulence intensity, which can provide homogeneous wind speed during installation of wind power generators.


Author(s):  
A. H. Raza ◽  
R. A. Lai-Fook ◽  
C. J. Lawrence

A theoretical model of time-dependent flow based on Reynolds equation using emulsion processing in a Cavity Transfer Mixer (CTM) has been developed in Mathematica and is presented in this work. It is a continuum model, which allows the study of materials undergoing rapid deformation. The flow of a fluid in a CTM is examined using a finite difference analysis (FDA) to solve the flow equations for an unwound section with cavities arranged in a rectangular pattern. Periodic boundary conditions are included in the model to predict the pressure distribution, which allows subsequent determination of the flow field. The solution procedure gives a smooth function for the pressure field, with equal pressures at the boundaries in the y-direction and an overall mean pressure gradient in the x-direction. Once the pressure has been found, several flow properties follow directly. The flow in the downstream axial direction is seen to consist of purely pressure-driven flow. In contrast, the flow in the cross-cavity direction is a recirculating flow driven by the drag velocity of the moving rotor surface. These two flows taken together combine into a helical flow travelling through the cavity. Because of this, there is likely to bre a high degree of laminar and distributive flow in this type of machine. The experimental part of this work addresses the processing of an emulsion in the CTM when it is run under batch and continuous modes of operation. The flow characteristics have been studied for varying rotor speeds of 0 rpm, 16 rpm, 32 rpm, 48 rpm and 64 rpm. Also studied were the changes that the emulsion exhibits along the mixer length and with time in the mixer. The experiments indicate that increase in the rotational speed causes the viscosity to reduce systematically in both batch and continuous modes of operation.


Author(s):  
Lisa Prahl Wittberg ◽  
Stevin van Wyk ◽  
Mihai Mihaescu ◽  
Laszlo Fuchs ◽  
Ephraim Gutmark ◽  
...  

Author(s):  
R. Pichler ◽  
Yaomin Zhao ◽  
R. D. Sandberg ◽  
V. Michelassi ◽  
R. Pacciani ◽  
...  

In low-pressure-turbines (LPT) around 60–70% of losses are generated away from end-walls, while the remaining 30–40% is controlled by the interaction of the blade profile with the end-wall boundary layer. Experimental and numerical studies have shown how the strength and penetration of the secondary flow depends on the characteristics of the incoming end-wall boundary layer. Experimental techniques did shed light on the mechanism that controls the growth of the secondary vortices, and scale-resolving CFD allowed to dive deep into the details of the vorticity generation. Along these lines, this paper discusses the end-wall flow characteristics of the T106 LPT profile at Re = 120K and M = 0.59 by benchmarking with experiments and investigating the impact of the incoming boundary layer state. The simulations are carried out with proven Reynolds-averaged Navier–Stokes (RANS) and large-eddy simulation (LES) solvers to determine if Reynolds Averaged models can capture the relevant flow details with enough accuracy to drive the design of this flow region. Part I of the paper focuses on the critical grid needs to ensure accurate LES, and on the analysis of the overall time averaged flow field and comparison between RANS, LES and measurements when available. In particular, the growth of secondary flow features, the trace and strength of the secondary vortex system, its impact on the blade load variation along the span and end-wall flow visualizations are analysed. The ability of LES and RANS to accurately predict the secondary flows is discussed together with the implications this has on design.


Author(s):  
Saqib Jamshed ◽  
Amit Dhiman

Abstract The current research focuses on the laminar flow through permeable side-by-side bars of a square cross-section in a channel-confined domain. Vorticity generation on the leeward sides of the permeable bodies further necessitates the study for a better understanding of underlying physics. Reynolds number Re and Darcy number Da are varied from 5 to 150 and 10-6 to 10-2, respectively, at transverse gap ratios s/d=2.5-10. In the perspective of periodic unsteady flow, critical Re for the onset of vortex shedding is analyzed. Streamlines, vorticity, pressure coefficient distribution, and velocity profiles are discussed to identify the wake patterns. In lower permeability level, vortex-shedding from the permeable square cylinders is observed either in synchronized anti-phase mode or a single large vortex street with a synchronized in-phase pattern in the near wake. A steady-state wake pattern symmetric and flocked towards the centerline is observed for all s/d at a higher permeability level regardless of Re. Wake patterns are not altered for Da=10-6-10-3; instead, prompt extermination of the two vortex streets downstream is observed at Da=10-3 as compared to Da=10-6. The impact of s/d, Re, and permeability on the drag is examined. A jump in the flow characteristics and drag forces is noticed at higher Re for the mid-range Da remarkably at lower s/d. For the extent of high permeability, the drag coefficient asymptotically gets closer to zero.


2018 ◽  
Vol 40 ◽  
pp. 06023
Author(s):  
Martin Bruwier ◽  
Pierre Archambeau ◽  
Sébastien Erpicum ◽  
Michel Pirotton ◽  
Benjamin Dewals

Anisotropic porosity shallow-water models are used to take into account detailed topographic information through porosity parameters multiplying the various terms of the shallow-water equations. A storage porosity is assigned to each cell to reflect the void fraction in the cell and a conveyance porosity is used at each edge to reproduce the impact of subgrid obstacles on the flux terms. To guaranty the numerical stability, the time step depends on the value of the porosity parameters. This may hamper severely the computational efficiency in the presence of cells with low values of storage porosity. Cartesian grids are particularly sensitive to such a case since the meshing stems directly from the choice of the grid size. In this paper, this problem is addressed by using an original merging technique consisting in merging cells with a storage porosity lower than a threshold value with neighbouring cells. The model was tested for modelling a prismatic channel with different orientations between the Cartesian computational grid and the channel direction. The results show that the standard anisotropic porosity model (without merging) improves the reproduction of the flow characteristics; but at the cost of a significantly higher computational time. In contrast, the computational time is drastically reduced and the accuracy preserved when the merging technique is used with the porosity model.


Sign in / Sign up

Export Citation Format

Share Document