The linear stability between a Newtonian and a power-law fluid under a normal electric field

2020 ◽  
Vol 277 ◽  
pp. 104220 ◽  
Author(s):  
S. Ilke Kaykanat ◽  
A. Kerem Uguz
2007 ◽  
Vol 583 ◽  
pp. 347-377 ◽  
Author(s):  
F. LI ◽  
O. OZEN ◽  
N. AUBRY ◽  
D. T. PAPAGEORGIOU ◽  
P. G. PETROPOULOS

We study the electrohydrodynamic stability of the interface between two superposed viscous fluids in a channel subjected to a normal electric field. The two fluids can have different densities, viscosities, permittivities and conductivities. The interface allows surface charges, and there exists an electrical tangential shear stress at the interface owing to the finite conductivities of the two fluids. The long-wave linear stability analysis is performed within the generic Orr–Sommerfeld framework for both perfect and leaky dielectrics. In the framework of the long-wave linear stability analysis, the wave speed is expressed in terms of the ratio of viscosities, densities, permittivities and conductivities of the two fluids. For perfect dielectrics, the electric field always has a destabilizing effect, whereas for leaky dielectrics, the electric field can have either a destabilizing or a stabilizing effect depending on the ratios of permittivities and conductivities of the two fluids. In addition, the linear stability analysis for all wavenumbers is carried out numerically using the Chebyshev spectral method, and the various types of neutral stability curves (NSC) obtained are discussed.


1993 ◽  
Vol 3 (8) ◽  
pp. 1201-1225 ◽  
Author(s):  
G. N�ron de Surgy ◽  
J.-P. Chabrerie ◽  
O. Denoux ◽  
J.-E. Wesfreid

1997 ◽  
Vol 473 ◽  
Author(s):  
Heng-Chih Lin ◽  
Edwin C. Kan ◽  
Toshiaki Yamanaka ◽  
Simon J. Fang ◽  
Kwame N. Eason ◽  
...  

ABSTRACTFor future CMOS GSI technology, Si/SiO2 interface micro-roughness becomes a non-negligible problem. Interface roughness causes fluctuations of the surface normal electric field, which, in turn, change the gate oxide Fowler-Nordheim tunneling behavior. In this research, we used a simple two-spheres model and a three-dimensional Laplace solver to simulate the electric field and the tunneling current in the oxide region. Our results show that both quantities are strong functions of roughness spatial wavelength, associated amplitude, and oxide thickness. We found that RMS roughness itself cannot fully characterize surface roughness and that roughness has a larger effect for thicker oxide in terms of surface electric field and tunneling behavior.


2009 ◽  
Vol 36 (6) ◽  
pp. 524-537 ◽  
Author(s):  
P. A. Lakshmi Narayana ◽  
P. V. S. N. Murthy ◽  
P. V. S. S. S. R. Krishna ◽  
Adrian Postelnicu

2018 ◽  
Vol 9 (7) ◽  
pp. 871-879
Author(s):  
Rajesh Shrivastava ◽  
R. S. Chandel ◽  
Ajay Kumar ◽  
Keerty Shrivastava and Sanjeet Kumar

1988 ◽  
Vol 3 (3) ◽  
pp. 156-164 ◽  
Author(s):  
A. P. Kakouris ◽  
P. K. Freakley
Keyword(s):  

Sign in / Sign up

Export Citation Format

Share Document