The coordination number calculation from total structure factor measurements

2009 ◽  
Vol 355 (37-42) ◽  
pp. 1811-1814 ◽  
Author(s):  
Viviana Cristiglio ◽  
Gabriel J. Cuello ◽  
Andrea A. Piarristeguy ◽  
Annie Pradel
1983 ◽  
Vol 38 (10) ◽  
pp. 1093-1097 ◽  
Author(s):  
E. Nassif ◽  
P. Lamparter ◽  
B. Sedelmeyer ◽  
S. Steeb

Abstract The binary molten alloys Mn74Si26 and Mn33.5Si66.5 have been investigated by means of X-ray diffraction. The total structure factors as well as the total pair correlation functions were evaluated. The interatomic distances and total coordination numbers are given. The structural results for Mn74Si26 were compared to those for amorphous Mn74Si23P3 and for a tetrahedral packing model. A pronounced shoulder on the second maximum of the structure factor, which normally is characteristic for the curves obtained with amorphous substances was observed for the Mn74Si26 melt. With the Mn33.5Si66.5 melt, however, this feature cold not be observed. Since with this concentration no glass forming by melt spinning is possible, a correlation between the shape of the second maximum of a total structure factor and the glass forming ability of the corresponding melt is suggested.


A systematic analysis of those liquid binary 2:1 systems (denoted MX 2 ), for which experimental partial structure factors are available from the isotopic substitution method in neutron diffraction, is made using the Bhatia-Thornton (BT) formalism.Particular attention is paid to the origin of the first sharp diffraction peak (FSDP ), which occurs in the measured diffraction patterns for some of the MX 2 systems, since it appears, from recent studies, that this feature is a signature of directional bonding. It is found that FSDPS can occur in all three BT partial structure factors S xB (k). A FSDP feature in the concentration-concentration partial structure factor S cc (k) is not, however, pronounced except in the case of MgCl 2 and the glass forming network melts ZnCl 2 and GeSe 2 . To the extent that these systems can be regarded as ionic melts a FSDP in S cc (k) implies a non-uniformity in the charge distribution on the scale of the intermediate-range order (IRO). The structure of molten GeSe 2 is compared with the structures of molten ZnCl 2 , glassy GeS 2 and glassy Si0 2 . Although the GeSe 2 and ZnCl 2 melts have different short-range order, there are similarities in the observed IRO which can be attributed to the arrangement of the electropositive species M. The essential features of the measured total structure factor for glassy GeS 2 can be reproduced by using the molten GeSe 2 S zB (k). This result lends support to the notion that the S zB (k) for liquid GeSe 2 (and ZnCl 2 ) are characteristic of both the liquid and glassy states of other network glass forming systems. The structures of molten GeSe 2 (or ZnCl 2 ) and glassy Si0 2 are, however, found to be different. The observed discrepancies are largest in the region of the FSDP which signifies pronounced differences in the nature of the IRO for these systems.


1983 ◽  
Vol 38 (10) ◽  
pp. 1098-1102
Author(s):  
E. Nassif ◽  
P. Lamparter ◽  
B. Sedelmeyer ◽  
S. Steeb

Abstract The structural results for molten Ni81B19 are compared with the structure of a metallic glass which can be obtained at the same composition by rapid quenching the melt within a melt spin equipment. Structural relationship exists between the molten and the amorphous state. This feature follows especially from a marked asymmetry of the second maximum of the structure factor obtained from the melts, to which corresponds the splitting up of the second maximum in the total structure factor of the amorphous specimen. With the Ni53B47- and the Ni43B57 -melts which don't belong to the concentration range of glass-forming Ni-B-melts no peculiarities in the range of the second maximum of the structure factor were observed.


2011 ◽  
Vol 291-294 ◽  
pp. 499-504
Author(s):  
Hai Lin Zhang ◽  
Yu Bo Jiang ◽  
Xue Lei Tian

Structural analysis software for amorphous alloy has been developed. The structure factor, distribution function, the first coordination number, the first coordination radius, the correlation radius, the atomic number of cluster and the atomic average density of amorphous alloy can be gotten with this software. This software’s runtime stability and calculated accuracy was verified by its practical application. Structure of amorphous Zr41Ti14Ni10Cu12.5Be22.5 alloy was exactly analyzed using this software, which proved that the design of the software is precise and the calculation is exact.


2002 ◽  
Vol 80 (9) ◽  
pp. 1059-1068 ◽  
Author(s):  
B Tomberli ◽  
C J Benmore ◽  
J Neuefeind ◽  
P A Egelstaff

High-energy electromagnetic-radiation-scattering techniques have been used to measure the structural differences between five isotopic samples of ethanol (CH3CH2OH, CD3CD2OD, CD3CH2OH, CH3CH2OD, and CH3CD2OH) at room temperature and ambient pressure. The differences in the X-ray structure factors between several pairs of isotopes, ΔSX(Q), are shown to have maximum amplitudes that are on the order of a few percent compared to the total structure factor for CH3CH2OH. Our uncertainties are an order of magnitude smaller than those of early gamma-ray measurements on methanol (C.J. Benmore and P.A. Egelstaff. J. Phys. Condens. Matter, 8, 9429 (1996)). These studies have shown that isotopic structural differences in room-temperature ethanol vary as a function of substitution site and are in qualitative agreement with similar differences found in liquid methanol. PACS Nos.: 61.20-p, 61.25E, 61.10-E


The problem of those discernible features of the intermediate range order (IRO) which can be attributed to the first sharp diffraction peak (FSDP) observed in the structure factor of many liquid and glassy materials is approached by treating this peak as a distinct feature. It is found, by considering the measured partial structure factors, S αβ ( k ), for molten ZnCl 2 , GeSe 2 , MgCl 2 , NiBr 2 and Nil 2 and the measured total structure factors, F ( k ), for glassy SiO 2 , PS 4 and liquid CCl 4 , that the propensity of the FSDP to have a prominent effect on the underlying features of the IRO depends noticeably on the system type. Specifically, the FSDP confers a marked oscillatory character of periodicity 2π/ k 1 (where k 1 is the FSDP position) on the IRO when the local structural units, which give rise to the density fluctuations on the IRO scale, exist as stable entities for a timescale τ ≫ 5 × 10 -12 s. The FSDP therefore accounts for the discernible features of the underlying IRO for the viscous glass forming liquids ZnCl 2 and GeSe 2 , for the glasses SiO 2 and PS 4 , and for the molecular liquid CCl 4 . The influence of the FSDP on the IRO is less pronounced for molten MgCl 2 and is negligible for molten NiBr 2 and Nil 2 , both of which have a high cation mobility which leads to a relative instability of the Ni 2+ centred structural units. The effect on the FSDP of temperature and pressure are briefly considered as are the development of the FSDP in molten ZnX 2 (when X is changed from Cl to I to Br) and the minimum size of r -space model which is required if the FSDP is to be accurately predicted.


1975 ◽  
Vol 30 (12) ◽  
pp. 1655-1660 ◽  
Author(s):  
Y. Waseda ◽  
S. Tamaki

Abstract X-ray diffraction patterns have been obtained from molten Te at 470, 520 and 570 °C. The heights of the peak maxima in the structure factor were much the same in contrast with those of typical molten metals such as sodium.Molten Tl-Te alloys have been studied by X-ray diffraction for the alloy compositions 25, 33.3, 50, 60 and 75 at% Te at 500 °C and at about 20 °C above the liquidus. The total structure factors for the 25 and 33.3 at% Te alloys were almost the same as that of pure Tl. This implies that the atomic arrangement of these molten alloys is very close to that of pure Tl. Although a drastic change is not found in the general form of the structure factor, the parameter of the range of local atomic order abruptly increases on passing from Tl2Te to more Te-rich alloys. The three partial structures were also evaluated from the observed X-ray intensities assuming that each partial structure is independent of the relative abundance of the constituent elements in the alloys.


1987 ◽  
Vol 42 (5) ◽  
pp. 507-510 ◽  
Author(s):  
E. Bühler ◽  
P. Lamparter ◽  
S. Steeb

By means of X-ray diffraction in transmission the molten MgxZn(1oo-x)-alloys (x = 0, 8, 15, 30, 40, 50, 60, 70, 73, 80, 90, 100) were investigated and the total structure factor S (Q) , the total pair correlation function, the number of nearest neighbours as well as the atomic distances were evaluated. For 30 ≦ x ≦ 80 a premaximum in S (Q) was observed which is caused by chemical short range order. The comparison of the premaximum of the Mg70Zn30-melt with that of the corresponding amorphous alloy shows that within the melt the chemical short range order amounts to about 40% of that of the amorphous alloy.


Sign in / Sign up

Export Citation Format

Share Document