Aerogel–aerogel composites for normal temperature range thermal insulations

2016 ◽  
Vol 441 ◽  
pp. 42-48 ◽  
Author(s):  
Jessica Laskowski ◽  
Barbara Milow ◽  
Lorenz Ratke
Author(s):  
Takahiro Ohmura

Guarded hot plate method (GHP method) is the most popular way of measuring thermal conductivity of thermal insulation. However, there are large differences among the thermal conductivities measured by different apparatuses which are made in different institutions in the temperature range above 100 °C. It is considered the reason that we have no standard material for measurement of thermal conductivity. The standard material is only glass wool which are produced by NIST (National Institute of Standards and Technology) in a temperature range from about 7 to 67 °C. Then, I have researched how far the influence of the difference in measurement methods and apparatuses extends. Furthermore, I have investigated how to measure accurately thermal conductivity in the temperature range which there are few reference materials. In this study, I proposed to increase the accuracy of thermal conductivity of thermal insulation by comparing with values obtained using different methods. I investigated the practicality of the comparison of the results obtained by different methods, which are the GHP, cyclic heat, transient hot wire, and Hot Disk methods, for the accurate measurement at the temperature range from −170 to 1300 °C. First, I developed the three types of measurement apparatuses; one can measure thermal conductivity by using both the GHP and cyclic heat methods in the temperature range from 100 to 1300 °C, the second can measure using both the cyclic heat and transient hot wire methods in the temperature range from 100 to 1000 °C, and the third can measure using both the cyclic heat, transient hot wire, and Hot Disk methods in the temperature range from −170 to 25 °C. Next, I measured thermal conductivities of various thermal insulations using these apparatuses. In the temperature range above 100 °C, the results obtained by using the GHP and cyclic heat methods agree with each other within ± 10% deviations. In like manner, the results obtained by using the cyclic heat and transient hot wire methods agree with each other within ± 10% deviations. Furthermore, in the temperature range from −120 °C to 25°C, the results obtained by using the cyclic heat, transient hot wire, and Hot Disk methods agree with each other within ± 10% deviations. Therefore, it is thought that to compare the thermal conductivities obtained by the different measurement methods will be practical for improvement of the accuracy measurement at the temperature range in the absence of reference materials.


Author(s):  
J.A. Lambert ◽  
P.S. Dobson

The defect structure of ion-implanted silicon, which has been annealed in the temperature range 800°C-1100°C, consists of extrinsic Frank faulted loops and perfect dislocation loops, together with‘rod like’ defects elongated along <110> directions. Various structures have been suggested for the elongated defects and it was argued that an extrinsically faulted Frank loop could undergo partial shear to yield an intrinsically faulted defect having a Burgers vector of 1/6 <411>.This defect has been observed in boron implanted silicon (1015 B+ cm-2 40KeV) and a detailed contrast analysis has confirmed the proposed structure.


Author(s):  
K. Vasudevan ◽  
H. P. Kao ◽  
C. R. Brooks ◽  
E. E. Stansbury

The Ni4Mo alloy has a short-range ordered fee structure (α) above 868°C, but transforms below this temperature to an ordered bet structure (β) by rearrangement of atoms on the fee lattice. The disordered α, retained by rapid cooling, can be ordered by appropriate aging below 868°C. Initially, very fine β domains in six different but crystallographically related variants form and grow in size on further aging. However, in the temperature range 600-775°C, a coarsening reaction begins at the former α grain boundaries and the alloy also coarsens by this mechanism. The purpose of this paper is to report on TEM observations showing the characteristics of this grain boundary reaction.


Author(s):  
N. Rozhanski ◽  
A. Barg

Amorphous Ni-Nb alloys are of potential interest as diffusion barriers for high temperature metallization for VLSI. In the present work amorphous Ni-Nb films were sputter deposited on Si(100) and their interaction with a substrate was studied in the temperature range (200-700)°C. The crystallization of films was observed on the plan-view specimens heated in-situ in Philips-400ST microscope. Cross-sectional objects were prepared to study the structure of interfaces.The crystallization temperature of Ni5 0 Ni5 0 and Ni8 0 Nb2 0 films was found to be equal to 675°C and 525°C correspondingly. The crystallization of Ni5 0 Ni5 0 films is followed by the formation of Ni6Nb7 and Ni3Nb nucleus. Ni8 0Nb2 0 films crystallise with the formation of Ni and Ni3Nb crystals. No interaction of both films with Si substrate was observed on plan-view specimens up to 700°C, that is due to the barrier action of the native SiO2 layer.


Author(s):  
P. Moine ◽  
G. M. Michal ◽  
R. Sinclair

Premartensitic effects in near equiatomic TiNi have been pointed out by several authors(1-5). These include anomalous contrast in electron microscopy images (mottling, striations, etc. ),diffraction effects(diffuse streaks, extra reflections, etc.), a resistivity peak above Ms (temperature at which a perceptible amount of martensite is formed without applied stress). However the structural changes occuring in this temperature range are not well understood. The purpose of this study is to clarify these phenomena.


1987 ◽  
Vol 134 (5) ◽  
pp. 291 ◽  
Author(s):  
K.T.V. Grattan ◽  
J.D. Manwell ◽  
S.M.L. Sim ◽  
C.A. Willson

1997 ◽  
Vol 94 ◽  
pp. 484-502
Author(s):  
S Fauvet ◽  
JP Ganne ◽  
J Brion ◽  
D Daumont ◽  
J Malicet ◽  
...  

Sign in / Sign up

Export Citation Format

Share Document