Natural flavonoid galangin alleviates microglia-trigged blood–retinal barrier dysfunction during the development of diabetic retinopathy

2019 ◽  
Vol 65 ◽  
pp. 1-14 ◽  
Author(s):  
Tianyu Zhang ◽  
Xiyu Mei ◽  
Hao Ouyang ◽  
Bin Lu ◽  
Zengyang Yu ◽  
...  
2021 ◽  
Vol 5 (3) ◽  
pp. 01-05
Author(s):  
Imteyaz Qamar

Diabetic retinopathy (DR) is a common complication amongst patients that have diabetes. It is a leading cause of blindness in middle age people. A large proportion of patients who have diabetes develop retinopathy. There are several immunological reasons associated with the pathophysiology of this disease. Role of several mediators that increase the oxidative stress and have a pro-inflammatory effect which leads to capillary occlusion and neovascularization (NV). Increased vasopermeability due to disruption of the blood-retinal barrier (BRB) leading to diabetic macular edema (DME). Immunotherapies utilise different compounds and target various inflammatory molecules like TNF-α and pathways such as PPARγ for treatment of this progressive disease. Inflammatory and pro-inflammatory pathways are found to have an essential role in promoting DR; therefore, targeting them provides a useful technique for curing DR.


2021 ◽  
Vol 21 ◽  
Author(s):  
Hui Zhang ◽  
Xiaomin Zhang ◽  
Xiaorong Li

: Exosomes, nanosized extracellular vesicles with a size of 30–150nm, contain many biological materials, such as messenger RNA (mRNA), microRNA (miRNA), proteins, and transcription factors. It has been identified in all biological fluids and recognized as an important part of intercellular communication. While the role of exosomes in cancer has been studied in-depth, our understanding of their relevance for ocular tissues has just begun to evolve. Intraocular fluids, including aqueous humor and vitreous humor, play a role in nourishing eye tissues and in expelling metabolites. In the pathological state, intraocular exosomes can mediate pathological processes such as ECM remodeling, retinal inflammation, and blood-retinal barrier dysfunction. Herein, we reviewed the latest advances of intraocular exosomes in the research of several eye diseases, including glaucoma, age-related macular degeneration, myopia, and ocular tumors, and discuss how intraocular exosomes contribute to the pathogenesis and progression of multiple eye diseases.


2019 ◽  
Vol 47 (9) ◽  
pp. 1182-1197 ◽  
Author(s):  
Chaoyang Zhang ◽  
Hai Xie ◽  
Qian Yang ◽  
Yiting Yang ◽  
Weiye Li ◽  
...  

2017 ◽  
Vol 312 (3) ◽  
pp. C244-C253 ◽  
Author(s):  
Blanca Molins ◽  
Anna Pascual ◽  
Méndez ◽  
Victor Llorenç ◽  
Javier Zarranz-Ventura ◽  
...  

The retinal pigment epithelium (RPE) forms the outer blood-retinal barrier (oBRB) and is the prime target of early age-related macular degeneration (AMD). C-reactive protein (CRP), a serum biomarker for chronic inflammation and AMD, presents two different isoforms, monomeric (mCRP) and pentameric (pCRP), that may have a different effect on inflammation and barrier function in the RPE. The results reported in this study suggest that mCRP but not pCRP impairs RPE functionality by increasing paracellular permeability and disrupting the tight junction proteins ZO-1 and occludin in RPE cells. Additionally, we evaluated the effect of drugs commonly used in clinical settings on mCRP-induced barrier dysfunction. We found that a corticosteroid (methylprednisolone) and an anti-VEGF agent (bevacizumab) prevented mCRP-induced ARPE-19 barrier disruption and IL-8 production. Furthermore, bevacizumab was also able to revert mCRP-induced IL-8 increase after mCRP stimulation. In conclusion, the presence of mCRP within retinal tissue may lead to disruption of the oBRB, an effect that may be modified in the presence of corticosteroids or anti-VEGF drugs.


2011 ◽  
Vol 52 (6) ◽  
pp. 3784 ◽  
Author(s):  
Sampathkumar Rangasamy ◽  
Ramprasad Srinivasan ◽  
Joann Maestas ◽  
Paul G. McGuire ◽  
Arup Das

Diabetologia ◽  
2020 ◽  
Vol 64 (1) ◽  
pp. 211-225
Author(s):  
Hai Xie ◽  
Chaoyang Zhang ◽  
Dandan Liu ◽  
Qian Yang ◽  
Lei Tang ◽  
...  

Sign in / Sign up

Export Citation Format

Share Document