A hybrid coupled wall system with replaceable steel coupling beams for high-rise modular buildings

2020 ◽  
Vol 31 ◽  
pp. 101355 ◽  
Author(s):  
Zhen Wang ◽  
Wei Pan
2020 ◽  
Vol 2020 ◽  
pp. 1-16
Author(s):  
Yun Shi ◽  
Mingzhou Su ◽  
Lu Jiang ◽  
Qiaoling Zhou ◽  
Lingyu Guan ◽  
...  

This paper proposes a hybrid coupled partially encased composite (PEC) wall system, obtained through the connection of two PEC walls by means of the shear critical steel coupling beams with an innovative welded connection. This structural solution is designed to take advantage of both the stiffness of the PEC walls (required to limit building damage under frequent earthquakes) and the ductility of the steel coupling beams (necessary to dissipate energy under medium-intensity and high-intensity earthquakes). The connection performance of an innovative rigid joint with different configurations in this system is studied through pseudostatic analysis, and the seismic performance of the proposed hybrid coupled PEC wall system is evaluated through multirecord nonlinear dynamic analysis of a set of case studies. Adopted finite element models are developed and validated against the available experimental results. A summary of the results is presented and discussed to highlight the potential of the proposed hybrid coupled PEC wall systems. The key feature of this system is development of a reasonable two-level yielding mechanism (the first level is the yielding of the coupling beams, and the second level is the yielding of the PEC wall) without damage to the welded joints.


2014 ◽  
Vol 7 (5) ◽  
pp. 817-842 ◽  
Author(s):  
Seongwoo Gwon ◽  
Myoungsu Shin ◽  
Benjamin Pimentel ◽  
Deokjung Lee

1998 ◽  
Vol 25 (5) ◽  
pp. 803-818 ◽  
Author(s):  
Kent A Harries ◽  
Denis Mitchell ◽  
Richard G Redwood ◽  
William D Cook

The design and nonlinear dynamic analyses of four coupled wall prototype structures are presented. Two ductile partially coupled and two ductile coupled wall structures are considered, each having reinforced concrete and steel coupling beams. The design of each of the prototype structures was based on the provisions of the 1995 National Building Code of Canada. Nonlinear dynamic analyses of each structure, using four different scaled earthquake ground motions are presented and the results discussed. Comparisons of the responses of the structures with concrete and steel coupling beams are made, demonstrating the advantages of using steel beams to couple reinforced concrete walls.Key words: composite construction, coupled wall, diagonally reinforced concrete coupling beam, "flexure critical" steel coupling beam, seismic design, "shear critical" steel coupling beam.


2000 ◽  
Vol 16 (4) ◽  
pp. 775-799 ◽  
Author(s):  
Kent A. Harries ◽  
Bingnian Gong ◽  
Bahram M. Shahrooz

The efficiency of coupled wall systems to resist lateral loads is well known. In order for the desired behavior of the coupled wall system to be attained, the coupling beams must be sufficiently strong and stiff. The coupling beams, however, must also yield before the wall piers, behave in a ductile manner, and exhibit significant energy-absorbing characteristics. This paper reviews the current state of the art for the design of conventional reinforced concrete, diagonally reinforced concrete, steel, and composite steel-concrete coupling beams. Although not exhaustive, critical aspects of the design of these systems are presented.


2018 ◽  
Vol 22 (6) ◽  
pp. 1284-1296 ◽  
Author(s):  
Yong Li ◽  
Ye Liu ◽  
Shaoping Meng

Coupled wall systems are often used in high-rise buildings in zone of high seismic risk to provide lateral resistance to earthquake loading. Once damaged, reinforced concrete coupling beams are costly and time-consuming to repair post-earthquake. To enhance the seismic resilience for coupled wall structures, a novel replaceable steel truss coupling beam is first introduced. The proposed replaceable steel truss coupling beam consists of chord members at the top and bottom, respectively, and two buckling-restrained energy dissipaters are employed in the diagonal direction. The energy dissipaters can yield first before the wall piers and dissipate large amounts of energy to protect the main structure under seismic loadings. In addition, the energy dissipaters can be easily installed and post-earthquake repaired through pin connection with the chord members. This article mainly focused on the numerical and theoretical analyses of the proposed replaceable steel truss coupling beam, and nonlinear analytical models were developed in PERFORM-3D. An 11-story prototype structure was designed per Chinese code. The seismic response of hybrid coupled wall system with replaceable steel truss coupling beams was evaluated using nonlinear time history analysis and compared with the response of reinforced concrete coupled wall system with reinforced concrete coupling beams under seismic loadings. Results show that the proposed replaceable steel truss coupling beam leads to a good seismic response with reduced interstory drifts of the systems and rotational demand in the beams and wall piers due to a large energy dissipation capacity and overstrength.


2013 ◽  
Vol 351-352 ◽  
pp. 556-559
Author(s):  
Sun Woong Kim ◽  
Wan Shin Park ◽  
Nam Yong Eom ◽  
Hyun Do Yun ◽  
Young Il Jang

Hybrid coupled shear wall with steel coupling beams has often been used as load-resisting system of high-rise buildings under lateral loads. However, joint between steel beam and shear wall is under combined and high stress. Reinforcement details of the joint are very heavy. This study addresses the effect of shear wall cement composites type in hybrid wall system on the seismic performance of steel coupling beams embedded in shear wall. The main test variables were the failure mode of steel coupling beam and types of cement composites, such as PSH2C and concrete, for shear wall.


Sign in / Sign up

Export Citation Format

Share Document