Thermal and energy performance of medical offices of a heritage hospital building

2021 ◽  
pp. 102349
Author(s):  
M. Glória Gomes ◽  
A. Moret Rodrigues ◽  
Francisco Natividade
2019 ◽  
Vol 111 ◽  
pp. 06073 ◽  
Author(s):  
Ioan Silviu Dobosi ◽  
Cristina Tanasa ◽  
Nicoleta-Elena Kaba ◽  
Adrian Retezan ◽  
Dragos Mihaila

The building sector has been identified as having the greatest energy reduction potential and therefore represents a key factor for the European Union climate change combat objectives of achieving an 80-95% greenhouse gas emissions reduction by 2050. Hospitals buildings represent 7% of the nonresidential building stock in the European Union and are responsible for approximately 10% of the total energy consumption in this sector. The design and construction of hospital buildings is a complex and challenging activity for all the involved specialists, especially when energy performance is one of the objectives. This paper discusses the energy performance simulation on an hourly basis of a new hospital building that was constructed in the city of Mioveni, Romania. At this stage of the study, the building energy model solely investigates the performance of the building envelope, without modelling the HVAC system. The complexity of the building model derives from the multitude of thermal zones depending on interior temperature and ventilation air changes conditions. Several simulations are performed investigating the heating and cooling energy need depending on the building location.


2014 ◽  
Vol 899 ◽  
pp. 11-15 ◽  
Author(s):  
Nargjil Saipi ◽  
Matthias Schuss ◽  
Ulrich Pont ◽  
Ardeshir Mahdavi

This paper compares calculated and measured energy use data (for space heating and cooling) pertaining to a hospital building in Austria. The building's existing energy certificate as well as monitored heating and cooling demand information were acquired from the hospitals administration. Moreover, the energy performance of the building was modeled using a numeric simulation application. Thereby, an extensive effort was made to define model input assumptions (building construction, weather data, internal gains) based on actual circumstances in reality. The results of the study suggest that calculated (energy certificate) and simulated heating loads were reasonably close to actual values, whereas in case of cooling loads considerable discrepancies were observed.


2017 ◽  
Vol 141 ◽  
pp. 255-259 ◽  
Author(s):  
Nattanee Thinate ◽  
Wongkot Wongsapai ◽  
Det Damrongsak

2018 ◽  
Vol 10 (8) ◽  
pp. 2714 ◽  
Author(s):  
Carmen Calama-González ◽  
Ángel León-Rodríguez ◽  
Rafael Suárez

Hospital buildings present a significant savings potential in order to meet the objectives of H2020. The improvement of healthcare built environments contributes to improving the health of patients. In this respect, passive measurements must be prioritized, especially in relation to the weakest element of the building thermal enclosure: the window opening. Shading devices allow solar radiation and indoor temperature to be controlled, as well as improving visual comfort, mostly in buildings with a Mediterranean climate. This factor is of great importance when considering the increase in outdoor temperatures expected due to climate change. Unlike other studies in which predictive models are implemented, this paper examines a methodology based on the simultaneous monitoring of ambient variables, in real use and operative conditions, for two hospital rooms located in southern Spain. The aim of this research is to provide a comparative assessment of ambient conditions in a standard room with an egg-crate device and in a non-shaded one. The use of an egg-crate device allows a better yearly performance, improving natural illuminance levels, reducing incident solar radiation on the window, and decreasing artificial lighting consumption. However, its efficiency is greatly conditioned by the user patterns in relation to ambient systems, as the blind aperture level and the activation of the lighting system are directly controlled by users.


2020 ◽  
pp. 50-64
Author(s):  
Kuladeep Kumar Sadevi ◽  
Avlokita Agrawal

With the rise in awareness of energy efficient buildings and adoption of mandatory energy conservation codes across the globe, significant change is being observed in the way the buildings are designed. With the launch of Energy Conservation Building Code (ECBC) in India, climate responsive designs and passive cooling techniques are being explored increasingly in building designs. Of all the building envelope components, roof surface has been identified as the most significant with respect to the heat gain due to the incident solar radiation on buildings, especially in tropical climatic conditions. Since ECBC specifies stringent U-Values for roof assembly, use of insulating materials is becoming popular. Along with insulation, the shading of the roof is also observed to be an important strategy for improving thermal performance of the building, especially in Warm and humid climatic conditions. This study intends to assess the impact of roof shading on building’s energy performance in comparison to that of exposed roof with insulation. A typical office building with specific geometry and schedules has been identified as base case model for this study. This building is simulated using energy modelling software ‘Design Builder’ with base case parameters as prescribed in ECBC. Further, the same building has been simulated parametrically adjusting the amount of roof insulation and roof shading simultaneously. The overall energy consumption and the envelope performance of the top floor are extracted for analysis. The results indicate that the roof shading is an effective passive cooling strategy for both naturally ventilated and air conditioned buildings in Warm and humid climates of India. It is also observed that a fully shaded roof outperforms the insulated roof as per ECBC prescription. Provision of shading over roof reduces the annual energy consumption of building in case of both insulated and uninsulated roofs. However, the impact is higher for uninsulated roofs (U-Value of 3.933 W/m2K), being 4.18% as compared to 0.59% for insulated roofs (U-Value of 0.33 W/m2K).While the general assumption is that roof insulation helps in reducing the energy consumption in tropical buildings, it is observed to be the other way when insulation is provided with roof shading. It is due to restricted heat loss during night.


Author(s):  
Serhii Kovbasenko ◽  
Andriy Holyk ◽  
Serhii Hutarevych

The features of an advanced mathematical model of motion of a truck with a diesel engine operating on the diesel and diesel gas cycles are presented in the article. As a result of calculations using the mathematical model, a decrease in total mass emissions as a result of carbon monoxide emissions is observed due to a decrease in emissions of nitrogen oxides and emissions of soot in the diesel gas cycle compared to the diesel cycle. The mathematical model of a motion of a truck on a city driving cycle according to GOST 20306-90 allows to study the fuel-economic, environmental and energy indicators of a diesel and diesel gas vehicle. The results of the calculations on the mathematical model will make it possible to conclude on the feasibility of converting diesel vehicles to using compressed natural gas. Object of the study – the fuel-economic, environmental and energy performance diesel engine that runs on dual fuel system using CNG. Purpose of the study – study of changes in fuel, economic, environmental and energy performance of vehicles with diesel engines operating on diesel and diesel gas cycles, according to urban driving cycle modes. Method of the study – calculations on a mathematical model and comparison of results with road tests. Bench and road tests, results of calculations on the mathematical model of motion of a truck with diesel, working on diesel and diesel gas cycles, show the improvement of environmental performance of diesel vehicles during the converting to compressed natural gas in operation. Improvement of environmental performance is obtained mainly through the reduction of soot emissions and nitrogen oxides emissions from diesel gas cycle operations compared to diesel cycle operations. The results of the article can be used to further develop dual fuel system using CNG. Keywords: diesel engine, diesel gas engine, CNG


Sign in / Sign up

Export Citation Format

Share Document