scholarly journals Type I Collagen and heparan sulfate scaffolds support human chondrogenesis for cartilage tissue engineering

2012 ◽  
Vol 20 ◽  
pp. S271-S272
Author(s):  
S. Díaz-Prado ◽  
E. Muiños-López ◽  
T. Hermida-Gómez ◽  
I. Fuentes-Boquete ◽  
P. Esbrit ◽  
...  
2015 ◽  
Vol 03 (02) ◽  
Author(s):  
C. Sanjurjo Rodríguez ◽  
A.H. Martínez Sánchez ◽  
T. Hermida Gómez ◽  
I. Fuentes Boquete

2021 ◽  
pp. 1-12
Author(s):  
Ruo-Fu Tang ◽  
Xiao-zhong Zhou ◽  
Lie Niu ◽  
Yi-Ying Qi

BACKGROUND: Cartilage tissue lacks the ability to heal. Cartilage tissue engineering using cell-free scaffolds has been increasingly used in recent years. OBJECTIVE: This study describes the use of a type I collagen scaffold combined with WNT5A plasmid to promote chondrocyte proliferation and differentiation in a rabbit osteochondral defect model. METHODS: Type I collagen was extracted and fabricated into a collagen scaffold. To improve gene transfection efficiency, a cationic chitosan derivative N,N,N-trimethyl chitosan chloride (TMC) vector was used. A solution of TMC/WNT5A complexes was adsorbed to the collagen scaffold to prepare a WNT5A scaffold. Osteochondral defects were created in the femoral condyles of rabbits. The rabbits were divided into defect, scaffold, and scaffold with WNT5A groups. At 6 and 12 weeks after creation of the osteochondral defects, samples were collected from all groups for macroscopic observation and gene expression analysis. RESULTS: Samples from the defect group exhibited incomplete cartilage repair, while those from the scaffold and scaffold with WNT5A groups exhibited “preliminary cartilage” covering the defect. Cartilage regeneration was superior in the scaffold with WNT5A group compared to the scaffold group. Safranin O staining revealed more proteoglycans in the scaffold and scaffold with WNT5A groups compared to the defect group. The expression levels of aggrecan, collagen type II, and SOX9 genes were significantly higher in the scaffold with WNT5A group compared to the other two groups. CONCLUSIONS: Type I collagen scaffold showed effective adsorption and guided the three-dimensional arrangement of stem cells. WNT5A plasmid promoted cartilage repair by stimulating the expression of aggrecan, type II collagen, and SOX9 genes and proteins, as well as inhibiting cartilage hypertrophy.


Author(s):  
Tyler Novak ◽  
Sherry Voytik-Harbin ◽  
Corey P. Neu

Osteoarthritis (OA) affects over 27 million Americans, causing an annual economic burden of over $300 million [1]. Left untreated, local cartilage defects promote cartilage degeneration and serve as a target for clinical and research based interventions [2]. While current treatments have limited success and result in recurring symptoms [3], tissue engineering solutions are promising for cartilage repair.


2018 ◽  
Vol 9 ◽  
pp. 204173141880243 ◽  
Author(s):  
Guang-Zhen Jin ◽  
Hae-Won Kim

Dedifferentiation of chondrocytes remains a major problem in cartilage tissue engineering. The development of hydrogels that can preserve chondrogenic phenotype and prevent chondrocyte dedifferentiation is a meaningful strategy to solve dedifferentiation problem of chondrocytes. In the present study, three gels were prepared (alginate gel (Alg gel), type I collagen gel (Col gel), and their combination gel (Alg/Col gel)), and the in vitro efficacy of chondrocytes culture while preserving their phenotypes was investigated. While Col gel became substantially contracted with time, the cells encapsulated in Alg gel preserved the shape over the culture period of 14 days. The mechanical and cell-associated contraction behaviors of Alg/Col gel were similar to those of Alg. The cells in Alg and Alg/Col gels exhibited round morphology, whereas those in Col gel became elongated (i.e. fibroblast-like) during cultures. The cells proliferated with time in all gels with the highest proliferation being attained in Col gel. The expression of chondrogenic genes, including SOX9, type II collagen, and aggrecan, was significantly up-regulated in Alg/Col gel and Col gel, particularly in Col gel. However, the chondrocyte dedifferentiation markers, type I collagen and alkaline phosphatase ( ALP), were also expressed at significant levels in Col gel, which being contrasted with the events in Alg and Alg/Col gels. The current results suggest the cells cultured in hydrogels can express chondrocyte dedifferentiation markers as well as chondrocyte markers, which draws attention to choose proper hydrogels for chondrocyte-based cartilage tissue engineering.


2000 ◽  
Vol 110 (12) ◽  
pp. 2008-2011 ◽  
Author(s):  
Beth A. Wambach ◽  
Herman Cheung ◽  
Gary D. Josephson

2017 ◽  
Vol 23 (1-2) ◽  
pp. 55-68 ◽  
Author(s):  
Henrique V. Almeida ◽  
Binulal N. Sathy ◽  
Ivan Dudurych ◽  
Conor T. Buckley ◽  
Fergal J. O'Brien ◽  
...  

2016 ◽  
Vol 17 (10) ◽  
pp. 3145-3152 ◽  
Author(s):  
Nelda Vázquez-Portalatı́n ◽  
Claire E. Kilmer ◽  
Alyssa Panitch ◽  
Julie C. Liu

2020 ◽  
Vol 21 (3) ◽  
pp. 1004 ◽  
Author(s):  
Veronica Zubillaga ◽  
Ana Alonso-Varona ◽  
Susana C. M. Fernandes ◽  
Asier M. Salaberria ◽  
Teodoro Palomares

Articular cartilage degeneration is one of the most common causes of pain and disability in middle-aged and older people. Tissue engineering (TE) has shown great therapeutic promise for this condition. The design of cartilage regeneration constructs must take into account the specific characteristics of the cartilaginous matrix, as well as the avascular nature of cartilage and its cells’ peculiar arrangement in isogenic groups. Keeping these factors in mind, we have designed a 3D porous scaffold based on genipin-crosslinked chitosan/chitin nanocrystals for spheroid chondral differentiation of human adipose tissue-derived mesenchymal stem cells (hASCs) induced in hypoxic conditions. First, we demonstrated that, under low oxygen conditions, the chondrospheroids obtained express cartilage-specific markers including collagen type II (COL2A1) and aggrecan, lacking expression of osteogenic differentiation marker collagen type I (COL1A2). These results were associated with an increased expression of hypoxia-inducible factor 1α, which positively directs COL2A1 and aggrecan expression. Finally, we determined the most suitable chondrogenic differentiation pattern when hASC spheroids were seeded in the 3D porous scaffold under hypoxia and obtained a chondral extracellular matrix with a high sulphated glycosaminoglycan content, which is characteristic of articular cartilage. These findings highlight the potential use of such templates in cartilage tissue engineering.


Author(s):  
Hamed Alizadeh Sardroud ◽  
Tasker Wanlin ◽  
Xiongbiao Chen ◽  
B. Frank Eames

Chondrocytes that are impregnated within hydrogel constructs sense applied mechanical force and can respond by expressing collagens, which are deposited into the extracellular matrix (ECM). The intention of most cartilage tissue engineering is to form hyaline cartilage, but if mechanical stimulation pushes the ratio of collagen type I (Col1) to collagen type II (Col2) in the ECM too high, then fibrocartilage can form instead. With a focus on Col1 and Col2 expression, the first part of this article reviews the latest studies on hyaline cartilage regeneration within hydrogel constructs that are subjected to compression forces (one of the major types of the forces within joints) in vitro. Since the mechanical loading conditions involving compression and other forces in joints are difficult to reproduce in vitro, implantation of hydrogel constructs in vivo is also reviewed, again with a focus on Col1 and Col2 production within the newly formed cartilage. Furthermore, mechanotransduction pathways that may be related to the expression of Col1 and Col2 within chondrocytes are reviewed and examined. Also, two recently-emerged, novel approaches of load-shielding and synchrotron radiation (SR)–based imaging techniques are discussed and highlighted for future applications to the regeneration of hyaline cartilage. Going forward, all cartilage tissue engineering experiments should assess thoroughly whether fibrocartilage or hyaline cartilage is formed.


Sign in / Sign up

Export Citation Format

Share Document