scholarly journals Proteoglycan 4 reduces friction more than other synovial fluid components for both cartilage-cartilage and cartilage-metal articulation

Author(s):  
A.H.A. Damen ◽  
C.C. van Donkelaar ◽  
R.M. Cardinaels ◽  
J.-M. Brandt ◽  
T.A. Schmidt ◽  
...  
2021 ◽  
Vol 7 (1) ◽  
Author(s):  
Yan Zhou ◽  
Jianghua Ming ◽  
Yaming Li ◽  
Bochun Li ◽  
Ming Deng ◽  
...  

AbstractMicroRNAs (miRNAs) encapsulated within exosomes can serve as essential regulators of intercellular communication and represent promising biomarkers of several aging-associated disorders. However, the relationship between exosomal miRNAs and osteoarthritis (OA)-related chondrocytes and synovial fibroblasts (SFCs) remain to be clarified. Herein, we profiled synovial fluid-derived exosomal miRNAs and explored the effects of exosomal miRNAs derived from SFCs on chondrocyte inflammation, proliferation, and survival, and further assessed their impact on cartilage degeneration in a surgically-induced rat OA model. We identified 19 miRNAs within synovial fluid-derived exosomes that were differentially expressed when comparing OA and control patients. We then employed a microarray-based approach to confirm that exosomal miRNA-126-3p expression was significantly reduced in OA patient-derived synovial fluid exosomes. At a functional level, miRNA-126-3p mimic treatment was sufficient to promote rat chondrocyte migration and proliferation while also suppressing apoptosis and IL-1β, IL-6, and TNF-α expression. SFC-miRNA-126-3p-Exos were able to suppress apoptotic cell death and associated inflammation in chondrocytes. Our in vivo results revealed that rat SFC-derived exosomal miRNA-126-3p was sufficient to suppress the formation of osteophytes, prevent cartilage degeneration, and exert anti-apoptotic and anti-inflammatory effects on articular cartilage. Overall, our findings indicate that SFC exosome‐delivered miRNA-126-3p can constrain chondrocyte inflammation and cartilage degeneration. As such, SFC-miRNA-126-3p-Exos may be of therapeutic value for the treatment of patients suffering from OA.


2018 ◽  
Vol 46 (4) ◽  
pp. 890-899 ◽  
Author(s):  
Keiko Amano ◽  
Janet L. Huebner ◽  
Thomas V. Stabler ◽  
Matthew Tanaka ◽  
Charles E. McCulloch ◽  
...  

Background: Anterior cruciate ligament tears can lead to posttraumatic osteoarthritis. In addition to biomechanical factors, changes in biochemical profiles within the knee joint after injury and anterior cruciate ligament reconstruction (ACLR) may play a role in accelerating joint degeneration. Hypothesis/Purpose: It was hypothesized that cartilage matrix composition after ACLR is associated with the degree of inflammatory response after initial injury. This study evaluated the association between the inflammatory response after injury—as indicated by cytokine, metalloproteinase, and cartilage degradation marker concentrations in synovial fluid—and articular cartilage degeneration, measured by T1ρ and T2 quantitative magnetic resonance imaging up to 3 years after ACLR. Study Design: Cohort study; Level of evidence, 2. Methods: Twenty-six subjects from a longitudinal cohort study who underwent ACLR at a mean 8.5 weeks after injury (range, 4-19 weeks) had synovial fluid aspirated at the time of surgery. Immunoassays quantified biomarkers in synovial fluid. T1ρ and T2 values of articular cartilage were calculated with magnetic resonance scans acquired prior to surgery and at 6 months and 1, 2, and 3 years after surgery. Pearson correlation coefficients were calculated among the various biomarkers. K-means clustering was used to group subjects with similar biomarker profiles. Generalized estimating equations were used to find the overall differences in T1ρ and T2 values throughout these first 3 years after surgery between the clusters while controlling for other factors. Results: Significant and strong correlations were observed between several cytokines (interleukin 6 [IL-6], IL-8, IL-10, and tumor necrosis factor α) and 2 matrix metalloproteinases (MMP-1 and MMP-3) ( P < .05). Moderate correlations were found among combinations of C-terminal crosslinked telopeptide type II collagen, N-terminal telopeptide, cartilage oligomeric matrix protein, and sulfated glycosaminoglycan ( P < .05). Two clusters were generated, 1 of which was characterized by lower concentrations of cytokines (IL-6, IL-8, IL-10, tumor necrosis factor α) and MMP-1 and MMP-3 and higher sulfated glycosaminoglycan. This cluster was associated with significantly higher T1ρ and T2 values in the medial tibial and patellar cartilage over the first 3 years after ACLR. Conclusion: At the time of ACLR surgery, profiles of synovial fluid inflammatory cytokines, degradative enzymes, and cartilage breakdown products show promise as predictors of abnormal cartilage tissue integrity (increased T1ρ and T2 values) throughout the first 3 years after surgery. Clinical Relevance: The results suggest an intricate relationship between inflammation and cartilage turnover, which can in turn be influenced by timing after injury and patient factors.


Molecules ◽  
2020 ◽  
Vol 25 (22) ◽  
pp. 5467
Author(s):  
Hae Lim Kim ◽  
Hae Jin Lee ◽  
Dong-Ryung Lee ◽  
Bong-Keun Choi ◽  
Seung Hwan Yang

The aim of this study was to determine the anti-osteoarthritic effects of LI73014F2, which consists of Terminalia chebula fruit, Curcuma longa rhizome, and Boswellia serrata gum resin in a 2:1:2 ratio, in the monosodium iodoacetate (MIA)-induced osteoarthritis (OA) rat model. LI73014F2 was orally administered once per day for three weeks. Weight-bearing distribution and arthritis index (AI) were measured once per week to confirm the OA symptoms. Synovial membrane, proteoglycan layer, and cartilage damage were investigated by histological examination, while synovial fluid interleukin-1β level was analyzed using a commercial kit. Levels of pro-inflammatory mediators/cytokines and matrix metalloproteinases (MMPs) in the cartilage tissues were investigated to confirm the anti-osteoarthritic effects of LI73014F2. LI73014F2 significantly inhibited the MIA-induced increase in OA symptoms, synovial fluid cytokine, cartilage damage, and expression levels of pro-inflammatory mediators/cytokines and MMPs in the articular cartilage. These results suggest that LI73014F2 exerts anti-osteoarthritic effects by regulating inflammatory cytokines and MMPs in MIA-induced OA rats.


2019 ◽  
Vol 25 ◽  
pp. 107602961982811 ◽  
Author(s):  
Chase Thorson ◽  
Kevin Galicia ◽  
Andrew Burleson ◽  
Olivia Bouchard ◽  
Debra Hoppensteadt ◽  
...  

Osteoarthritis, a degenerative disease of the joints, is the most common form of arthritis in the knee. Total joint arthoplasty is a commonly used treatment for joint degeneration and osteoarthritis, and due to these factors, TJA for hip and knee joints is projected to grow by 137% and 601% between 2005 and 2030. Matrix metalloproteases are enzymes found in the extracellular matrix that cleave matrix components. Normally MMPs are downregulated in tissues by Tissue Inhibitors of Metalloproteases, or TIMPs. The relative concentration of TIMPs also may denote some of the activity of the MMPs found in serum. Lubricin (proteoglycan 4) is a molecule found in the synovial fluid that protects joints by dissipating strain energy during locomotion. Lubricin synovial fluid concentration is also diminished in many patients with osteoarthritis, but not all. Given the importance of these three sets of molecules, our lab investigated the correlation between circulating lubricin, MMP levels and TIMPs levels. Blood plasma samples were obtained from de-identified subjects undergoing total joint arthroplasty at Loyola University Medical Center and the University of Utah. Normal blood plasma from pooled healthy individuals served as a control. We analyzed biomarker levels in plasma using ELISA. Our data show that MMP-1 and 9 were increased in TJA patients compared to normal controls, while MMP-2 and 13 were decreased. We also found decreased lubricin and tissue factor in surgical patients relative to controls. These data support the idea that lubricin is vital in protecting the synovial joint and that MMPs play a complex role in the destruction of the joint.


Sign in / Sign up

Export Citation Format

Share Document