Detrital zircon provenance investigation from the Neoproterozoic successions of the South China Block: Paleogeographic implications

2019 ◽  
Vol 124 ◽  
pp. 25-37 ◽  
Author(s):  
Liang Luo ◽  
Lianbo Zeng ◽  
Kai Wang ◽  
Xiaoxia Yu ◽  
Xichen Zhang ◽  
...  
2019 ◽  
Vol 132 (5-6) ◽  
pp. 987-996
Author(s):  
Xiao-Ping Xia ◽  
Jian Xu ◽  
Chao Huang ◽  
Xiaoping Long ◽  
Meiling Zhou

Abstract The Paleotethys Ailaoshan Ocean separated the South China and Indochina blocks during the late Paleozoic. Uncertainty remains regarding subduction of this ocean—whether it was subducted eastward beneath the South China block or westward beneath the Indochina block. In this study, we present new detrital zircon U-Pb age, and Hf and O isotope data from the Longtan Formation, which was recognized to be deposited before the ocean closed. Our results show that the formation can be divided into three units: Unit 1 is distributed west of the suture and dominates the area; it contains major age peaks at 290–250 Ma and minor multiple old age peaks. Unit 2 consists of a minor distribution west of the suture, and it shows a dominant 250 Ma age peak; old zircons are very few or not present. Their Hf and O isotopic signatures are similar to those of unit 1. Unit 3 is distributed east of the suture and is characterized by a single distinct ca. 240 Ma age peak with almost no Precambrian zircons. We interpret that units 1 and 2 were likely deposited in a back-arc and forearc basin, respectively, and a volcanic arc developed on the eastern margin of the Indochina block, similar to the present-day northeastern Japan arc. Meanwhile, unit 3 was likely deposited in a forearc basin on the western margin of the South China block. Therefore, the Ailaoshan Ocean may undergone bipolar subduction both westward and eastward beneath the Indochina and South China blocks, respectively.


2012 ◽  
Vol 149 (6) ◽  
pp. 1124-1131 ◽  
Author(s):  
LIANG DUAN ◽  
QING-REN MENG ◽  
GUO-LI WU ◽  
SHOU-XIAN MA ◽  
LIN LI

AbstractLA-ICP-MS U–Pb dating of Lower Devonian detrital zircon samples from three representative sections in the South China block yields dominant Grenvillian and Pan-African populations, similar to the age distribution of early Palaeozoic samples from Gondwana, the Tethyan Himalaya and West Australia, in particular. Hf isotopic compositions indicate the contributions of juvenile crust at 1.6 Ga and 2.5 Ga, and bear a resemblance to their counterparts from SE Australia and West Antarctica, revealing the mixed origin of the Pan-African and Grenvillian grains from juvenile magmas and melting of pre-existing crustal rocks. These results suggest that the South China block should be considered an integral part of East Gondwana in early Palaeozoic time, rather than a discrete continental block in the Palaeo-Pacific or a fragment of Laurentia.


Tectonics ◽  
2010 ◽  
Vol 29 (6) ◽  
pp. n/a-n/a ◽  
Author(s):  
Yuejun Wang ◽  
Feifei Zhang ◽  
Weiming Fan ◽  
Guowei Zhang ◽  
Shiyue Chen ◽  
...  

2021 ◽  
pp. 1-22
Author(s):  
Farzaneh Shakerardakani ◽  
Franz Neubauer ◽  
Xiaoming Liu ◽  
Yunpeng Dong ◽  
Behzad Monfaredi ◽  
...  

Abstract New detrital U–Pb zircon ages from the Sanandaj–Sirjan metamorphic zone in the Zagros orogenic belt allow discussion of models of the late Neoproterozoic to early Palaeozoic plate tectonic evolution and position of the Iranian microcontinent within a global framework. A total of 194 valid age values from 362 zircon grains were obtained from three garnet-micaschist samples. The most abundant detrital zircon population included Ediacaran ages, with the main age peak at 0.60 Ga. Other significant age peaks are at c. 0.64–0.78 Ga, 0.80–0.91 Ga, 0.94–1.1 Ga, 1.8–2.0 Ga and 2.1–2.5 Ga. The various Palaeozoic zircon age peaks could be explained by sediment supply from sources within the Iranian microcontinent. However, Precambrian ages were found, implying a non-Iranian provenance or recycling of upper Ediacaran–Palaeozoic clastic rocks. Trace-element geochemical fingerprints show that most detrital zircons were sourced from continental magmatic settings. In this study, the late Grenvillian age population at c. 0.94–1.1 Ga is used to unravel the palaeogeographic origin of the Sanandaj–Sirjan metamorphic zone. This Grenvillian detrital age population relates to the ‘Gondwana superfan’ sediments, as found in many Gondwana-derived terranes within the European Variscides and Turkish terranes, but also to units further east, e.g. in the South China block. Biogeographic evidence proves that the Iranian microcontinent developed on the same North Gondwana margin extending from the South China block via Iran further to the west.


2021 ◽  
Vol 217 ◽  
pp. 103605
Author(s):  
Xianzhi Cao ◽  
Nicolas Flament ◽  
Sanzhong Li ◽  
R. Dietmar Müller

2018 ◽  
Author(s):  
Kai Cao ◽  
Guocan Wang ◽  
Philippe Hervé Leloup ◽  
Wei Mahéo ◽  
Yadong Xu ◽  
...  

Sign in / Sign up

Export Citation Format

Share Document