north gondwana
Recently Published Documents


TOTAL DOCUMENTS

50
(FIVE YEARS 12)

H-INDEX

16
(FIVE YEARS 2)

2021 ◽  
Vol 18 (1) ◽  
pp. 49
Author(s):  
Jean Le Menn ◽  
Rémy Gourvennec ◽  
José Manuel Piçarra ◽  
Michel Robardet
Keyword(s):  

2021 ◽  
pp. 105982
Author(s):  
Mohammed Mashre Atman Ahfaf ◽  
Ekundayo Joseph Adepehin ◽  
Che Aziz Ali ◽  
Habibah Jamil ◽  
Sylvester Powei Lubi

2021 ◽  
pp. 1-22
Author(s):  
Farzaneh Shakerardakani ◽  
Franz Neubauer ◽  
Xiaoming Liu ◽  
Yunpeng Dong ◽  
Behzad Monfaredi ◽  
...  

Abstract New detrital U–Pb zircon ages from the Sanandaj–Sirjan metamorphic zone in the Zagros orogenic belt allow discussion of models of the late Neoproterozoic to early Palaeozoic plate tectonic evolution and position of the Iranian microcontinent within a global framework. A total of 194 valid age values from 362 zircon grains were obtained from three garnet-micaschist samples. The most abundant detrital zircon population included Ediacaran ages, with the main age peak at 0.60 Ga. Other significant age peaks are at c. 0.64–0.78 Ga, 0.80–0.91 Ga, 0.94–1.1 Ga, 1.8–2.0 Ga and 2.1–2.5 Ga. The various Palaeozoic zircon age peaks could be explained by sediment supply from sources within the Iranian microcontinent. However, Precambrian ages were found, implying a non-Iranian provenance or recycling of upper Ediacaran–Palaeozoic clastic rocks. Trace-element geochemical fingerprints show that most detrital zircons were sourced from continental magmatic settings. In this study, the late Grenvillian age population at c. 0.94–1.1 Ga is used to unravel the palaeogeographic origin of the Sanandaj–Sirjan metamorphic zone. This Grenvillian detrital age population relates to the ‘Gondwana superfan’ sediments, as found in many Gondwana-derived terranes within the European Variscides and Turkish terranes, but also to units further east, e.g. in the South China block. Biogeographic evidence proves that the Iranian microcontinent developed on the same North Gondwana margin extending from the South China block via Iran further to the west.


Author(s):  
Alastair H. F. Robertson ◽  
Osman Parlak ◽  
Timur Ustaömer

AbstractThe Late Palaeozoic–Early Mesozoic Tethyan development of the Eastern Mediterranean region remains debatable, especially in Turkey, where alternative northward and southward subduction hypotheses are proposed. Relevant to this debate, new whole-rock geochemical data are provided here for early Carboniferous (Late Tournaisian-Late Visean; c. 340–350 Ma) tuffaceous sedimentary rocks within the Çataloturan thrust sheet (Aladağ nappe), eastern Taurides. The tuffs accumulated from evolved alkaline volcanism, variably mixed with terrigenous and radiolarian-rich sediments. In addition, Late Palaeozoic meta-volcanic rocks, c. 150 km farther NE, within the Binboğa (= Malatya) metamorphics (a low-grade high-pressure unit), are indicative of a within-plate setting. An impersistent geochemical subduction signature in these volcanics may represent an inherited, rather than contemporaneous, subduction influence, mainly because of the absence of a continental margin arc or of arc-derived tuff. Both the Binboğa metamorphics and the Çataloturan thrust sheet (Aladağ nappe) restore generally to the north of the relatively autochthonous Tauride carbonate platform (Geyik Dağ), within the carbonate platform bordering north-Gondwana. The Çataloturan thrust sheet is interpreted, specifically, as a c. E–W, deep-water, volcanically active rift that progressively infilled. Regional geological evidence suggests that melange units (Konya Complex, Afyon zone), Teke Dere unit, Lycian nappes), and Chios–Karaburun melange, E Aegean) accreted to the north-Gondwana continental margin during the late Carboniferous; this was coupled with localised calc-alkaline granitic magmatism (Afyon zone of Anatolide crustal block). We propose an interpretation in which Late Devonian–Carboniferous alkaline intra-plate volcanism relates to extension/rifting along the north-Gondwana margin. In contrast, the melange accretion and granitic magmatism could relate to short-lived late Carboniferous southward subduction that accompanied the diachronous closure of Palaeotethys.


2020 ◽  
pp. 1-17
Author(s):  
Guido Meinhold ◽  
Alexander Bassis ◽  
Matthias Hinderer ◽  
Anna Lewin ◽  
Jasper Berndt

Abstract We present the first comprehensive detrital zircon U–Pb age dataset from Palaeozoic sandstones of Saudi Arabia, which provides new insights into the erosion history of the East African Orogen and sediment recycling in northern Gondwana. Five main age populations are present in varying amounts in the zircon age spectra, with age peaks at ~625 Ma, ~775 Ma, ~980 Ma, ~1840 Ma and ~2480 Ma. Mainly igneous rocks of the Arabian–Nubian Shield are suggested to be the most prominent sources for the Ediacaran to middle Tonian zircon grains. Palaeoproterozoic and Archaean grains may be xenocrystic zircons or they have been recycled from older terrigenous sediment. A primary derivation from Palaeoproterozoic and Archaean basement is also possible, as rocks of such age occur in the vicinity. Approximately 4 % of the detrital zircons show Palaeozoic (340–541 Ma) ages. These grains are likely derived from Palaeozoic post-orogenic and anorogenic igneous rocks of NE Africa and Arabia. A few single grains gave up to Eoarchaean (3.6–4.0 Ga) ages, which are the oldest zircons yet described from Arabia and its vicinity. Their origin, however, is yet unknown. Detrital zircons with U–Pb ages of ~1.0 Ga are present in varying amounts in all of the samples and are a feature of terrigenous sediment belonging to the Gondwana super-fan system with an East African – Arabian zircon province.


2020 ◽  
Vol 201 ◽  
pp. 103079 ◽  
Author(s):  
José Manuel Fuenlabrada ◽  
Ricardo Arenas ◽  
Sonia Sánchez Martínez ◽  
Rubén Díez Fernández ◽  
Agustín P. Pieren ◽  
...  

2020 ◽  
Vol 81 (1) ◽  
pp. 41-66
Author(s):  
Darko Spahic ◽  
Tivadar Gaudenyi

The study represents a summary of the hitherto tectonic concepts revolving around a peri-Gondwanan fragment referred to as the Serbo- Macedonian Unit. The Serbo-Macedonian Unit as a gneiss-dominated basement segment is positioned in the proximity of the Baltican craton (peri-Moesian realm). This area represents a repository of the transferred broadly similar thus highly complex, elongated polycrystalline vestiges of the Pan-African inheritance. This peculiar far-travelled composite crustal fragment of north Gondwana is amalgamated on top of the Supragetic unit during the late Variscan peri-Moesian amalgamation. However, the original early Pa - leozoic tectonostratigraphic configuration of these three intimate green schistand medium- to high-grade gneiss-amphibolite basement vestiges (Serbo-Ma - cedonian/Supragetic and Getic) is further perplexed by the presence of poorly documented pre-Variscan (Ordovician?) lithospheric-scale event. The Pan-African to Lower Paleozoic subduction/magmatic arc stage led to the amalgamation, breakup and dispersal of a cluster of peri-Gondwanan continental and oceanic terranes. Breakup and dispersal from the northern shore of the Gondwanan active margin triggered the development of the Paleozoic deep-marine sedimentary cover (?Kucaj unit? or Getic unit). To make matter more complex, prior the Lower Paleozoic terrane agglomeration and sub - sequent dispersal, it appears that a Lower Paleozoic geodynamic linkage is additionally marked by the poorly investigated cross-lithospheric event. This event connects the outboard oceanic Supragetic/?Kucaj? succession with a segment of the former north Gondwanan protobasin (juvenile Serbo-Ma - cedonian Unit).


Sign in / Sign up

Export Citation Format

Share Document