The relationship between medial meniscal subluxation and stress distribution pattern of the knee joint: Finite element analysis

2016 ◽  
Vol 21 (1) ◽  
pp. 32-37 ◽  
Author(s):  
Kemal Gokkus ◽  
Halil Atmaca ◽  
Levent Uğur ◽  
Arif Özkan ◽  
Ahmet Turan Aydin
2012 ◽  
Vol 2 (1) ◽  
pp. 19 ◽  
Author(s):  
Bobin Saluja ◽  
Masood Alam ◽  
T Ravindranath ◽  
A Mubeen ◽  
Nidhi Adya ◽  
...  

2014 ◽  
Vol 601 ◽  
pp. 167-170
Author(s):  
Lucian Bogdan ◽  
Cristian Sorin Nes ◽  
Angelica Enkelhardt ◽  
Nicolae Faur ◽  
Carmen Sticlaru ◽  
...  

This paper presents a finite element analysis in order to determinate the stress distribution in an proposed model of the artificial cruciate ligament of the knee joint during the gait cycle.


Author(s):  
Zahra Trad ◽  
Abdelwahed Barkaoui ◽  
Moez Chafra ◽  
João Manuel RS Tavares

Osteoarthritis is a globally common disease that imposes a considerable ongoing health and economic burden on the socioeconomic system. As more and more biomechanical factors have been explored, malalignment of the lower limb has been found to influence the load distribution across the articular surface of the knee joint substantially. In this work, a three-dimensional finite element analysis was carried out to investigate the effect of varying the high tibial osteotomy correction angle on the stress distribution in both compartments of the human knee joint. Thereafter, determine the optimal correction angle to achieve a balanced loading between these two compartments. The developed finite element model was validated against experimental and numerical results. The findings of this work suggest that by changing the correction angle from 0° to 10° valgus, high tibial osteotomy shifted the mechanical load from the affected medial compartment to the lateral compartment with intact cartilage. The Von Mises and the shear stresses decreased in the medial compartment and increased in the lateral compartment. Moreover, a balanced stress distribution between the two compartments as well as the desired alignment were achieved under a valgus hypercorrection of 4.5° that significantly unloads the medial compartment, loads the lateral compartment and arrests the progression of osteoarthritis. After comparing the achieved results against the ones of previous studies that explored the effects of the high tibial osteotomy correction angle on either clinical outcomes or biomechanical outcomes, one can conclude that the findings of this study agree well with the related clinical data and recommendations found in the literature.


2015 ◽  
Vol 31 (2) ◽  
pp. 648-656
Author(s):  
Livia Fávaro Zeola ◽  
Fabrícia Araújo Pereira ◽  
Alexia da Mata Galvão ◽  
Tatiana Carvalho Montes ◽  
Sônia Cristina de Sousa ◽  
...  

2011 ◽  
Vol 101-102 ◽  
pp. 1096-1100
Author(s):  
Quan Rong Jing ◽  
Feng Xu ◽  
De Gao

Through the test of mechanical properties of the straw-biodegradable tableware, the relationship between performance and processing technology was analyzed and the optimal solution was obtained. And using finite element analysis software, the internal stress distribution under the specific load was obtained based on mechanical properties, more valuable reference method about tableware design was provided through studying the changing intensity.


2015 ◽  
Vol 41 (3) ◽  
pp. 252-257 ◽  
Author(s):  
Behnaz Ebadian ◽  
Ramin Mosharraf ◽  
Niloufar Khodaeian

The purpose of this finite element study was to evaluate the influence of implant inclination on the stress pattern in the bone surrounding the implants that support mandibular overdentures. The models used in this study were 3-implant-supported mandibular overdentures with a bar-and-clip attachment system. Each model was modified according to the distal implant inclination (0 and 20°). A unilateral vertical load was applied unilaterally to the first molar and first premolar of the overdenture, and the stress distribution in the bone was analyzed. Implant inclination decreased the stress distribution pattern in bone surrounding the implants when the load was applied on the molar site, but when applied at the premolar site, similar stress value changes were not found. Within the limitation of this study, it seems that the inclination of splinted implants in mandibular overdentures does not have any adverse effect on stress distribution pattern values around the implant.


Sign in / Sign up

Export Citation Format

Share Document