scholarly journals Differences in subchondral trabecular bone microstructure and finite element analysis-based biomechanical properties between osteoporosis and osteoarthritis

2020 ◽  
Vol 24 ◽  
pp. 39-45
Author(s):  
Zihao He ◽  
Linyang Chu ◽  
Xuqiang Liu ◽  
Xuequan Han ◽  
Kai Zhang ◽  
...  
Author(s):  
Ahmad Almhdie-Imjabber ◽  
Ridha Hambli ◽  
Jérôme Touvier ◽  
Olivier Rozenbaum ◽  
Eric Lespessailles ◽  
...  

2001 ◽  
Vol 123 (6) ◽  
pp. 607-612 ◽  
Author(s):  
John T. Koontz ◽  
Guillaume T. Charras ◽  
Robert E. Guldberg

A finite element method to simulate the formation of an interconnected trabecular bone microstructure oriented with respect to applied in vivo mechanical forces is introduced and quantitatively compared to experimental data from a hydraulic bone chamber implant model. Randomly located 45 μm mineralized nodules were used as the initial condition for the model simulations to represent an early stage of intramembranous bone formation. Boundary conditions were applied consistent with the mechanical environment provided by the in vivo bone chamber model. A two-dimensional repair simulation algorithm that incorporated strain energy density (SED), SED gradient, principal strain, or principal strain gradient as the local objective criterion was utilized to simulate the formation of an oriented trabecular bone microstructure. The simulation solutions were convergent, unique, and relatively insensitive to the assumed initial distribution of mineralized nodules. Model predictions of trabecular bone morphology and anisotropy were quantitatively compared to experimental results. All simulations produced structures that qualitatively resembled oriented trabecular bone. However, only simulations utilizing a gradient objective criterion yielded results quantitatively similar to in vivo observations. This simulation approach coupled with an experimental model that delivers controlled in vivo mechanical stimuli can be utilized to study the relationship between physical factors and microstructural adaptation during bone repair.


2004 ◽  
Vol 30 (4) ◽  
pp. 223-233 ◽  
Author(s):  
J. P. Geng ◽  
W. Xu ◽  
K. B. C. Tan ◽  
G. R. Liu

Abstract An osseointegrated stepped screw dental implant was evaluated using 2-dimensional finite element analysis (FEA). The implant was modeled in a cross section of the posterior human mandible digitized from a computed tomography (CT) generated patient data set. A 15-mm regular platform (RP) Branemark implant with equivalent length and neck diameter was used as a control. The study was performed under a number of clinically relevant parameters: loading at the top of the transmucosal abutment in vertical, horizontal, and 45° oblique 3 orientations. Elastic moduli of the mandible varied from a normal cortical bone level (13.4 GPa) to a trabecular bone level (1.37 GPa). The study indicated that an oblique load and elastic moduli of the cortical bone are important parameters to the implant design optimization. Compared with the cylindrical screw implant, the maximum von Mises stress of the stepped screw implant model was 17.9% lower in the trabecular bone-implant area. The study also showed that the stepped screw implant is suitable for the cortical bone modulus from 10 to 13.4 GPa, which is not necessarily as strict as the Branemark implant, for which a minimum 13.4 GPa cortical bone modulus is recommended.


Sign in / Sign up

Export Citation Format

Share Document