scholarly journals The emerging role of tibial cortex transverse transport in the treatment of chronic limb ischemic diseases

2020 ◽  
Vol 25 ◽  
pp. 17-24
Author(s):  
Guangwei Liu ◽  
Shanlang Li ◽  
Xiaocong Kuang ◽  
Jia Zhou ◽  
Zhaowei Zhong ◽  
...  
Blood ◽  
2012 ◽  
Vol 120 (11) ◽  
pp. 2167-2173 ◽  
Author(s):  
Luke H. Hoeppner ◽  
Kathryn N. Phoenix ◽  
Karl J. Clark ◽  
Resham Bhattacharya ◽  
Xun Gong ◽  
...  

AbstractVEGF induces vascular permeability (VP) in ischemic diseases and cancer, leading to many pathophysiological consequences. The molecular mechanisms by which VEGF acts to induce hyperpermeability are poorly understood and in vivo models that easily facilitate real-time, genetic studies of VP do not exist. In the present study, we report a heat-inducible VEGF transgenic zebrafish (Danio rerio) model through which VP can be monitored in real time. Using this approach with morpholino-mediated gene knock-down and knockout mice, we describe a novel role of phospholipase Cβ3 as a negative regulator of VEGF-mediated VP by regulating intracellular Ca2+ release. Our results suggest an important effect of PLCβ3 on VP and provide a new model with which to identify genetic regulators of VP crucial to several disease processes.


2018 ◽  
Vol 46 (6) ◽  
pp. 2551-2560 ◽  
Author(s):  
LiJun Qian ◽  
Jian Hong ◽  
YanMei Zhang ◽  
MengLin Zhu ◽  
XinChun Wang ◽  
...  

Background/Aims: Cardiac fibrosis is a pathological change leading to cardiac remodeling during the progression of myocardial ischemic diseases, and its therapeutic strategy remains to be explored. S100A4, a calcium-binding protein, participates in fibrotic diseases with an unclear mechanism. This study aimed to investigate the role of S100A4 in cardiac fibrosis. Methods: Cardiac fibroblasts from neonatal C57BL/6 mouse hearts were isolated and cultured. Myocardial infarction was induced by ligating the left anterior descending coronary artery (LAD). The ligation was not performed in the sham group. A volume of 5×105pfu/g adenovirus or 5 µM/g ICG-001 was intramyocardially injected into five parts bordering the infarction zone or normal region. We used Western blotting, quantitative RT-PCR, immunofluorescence, immunohistochemistry and Masson’s trichrome staining to explore the function of S100A4. Results: We found significant increases of S100A4 level and cardiac fibrosis markers, and β-catenin signaling activation in vitro and in vivo. In addition, knockdown of S100A4 significantly reduced cardiac fibrosis and β-catenin levels. Moreover, the expression of S100A4 decreased after ICG-001 inhibited β-catenin signal pathway. Conclusion: Downregulation of S100A4 alleviates cardiac fibrosis via Wnt/β -catenin pathway in mice. S100A4 may be a therapeutic target of cardiac fibrosis.


2019 ◽  
Vol 42 (3) ◽  
pp. 224-231 ◽  
Author(s):  
Seong Gyu Kwon ◽  
Insoo Park ◽  
Yang Woo Kwon ◽  
Tae Wook Lee ◽  
Gyu Tae Park ◽  
...  

2021 ◽  
Vol 22 (4) ◽  
pp. 1693
Author(s):  
Alison Domingues ◽  
Julia Jolibois ◽  
Perrine Marquet de Rougé ◽  
Valérie Nivet-Antoine

Thioredoxin interacting protein (TXNIP) is a metabolism- oxidative- and inflammation-related marker induced in cardiovascular diseases and is believed to represent a possible link between metabolism and cellular redox status. TXNIP is a potential biomarker in cardiovascular and ischemic diseases but also a novel identified target for preventive and curative medicine. The goal of this review is to focus on the novelties concerning TXNIP. After an overview in TXNIP involvement in oxidative stress, inflammation and metabolism, the remainder of this review presents the clues used to define TXNIP as a new marker at the genetic, blood, or ischemic site level in the context of cardiovascular and ischemic diseases.


2012 ◽  
Vol 2012 ◽  
pp. 1-7 ◽  
Author(s):  
Andrea Caporali ◽  
Costanza Emanueli

The termangiogenesisdescribes the growth of endothelial sprouts from preexisting postcapillary venules. More recently, this term has been used to generally indicate the growth and remodeling process of the primitive vascular network into a complex network during development. In adulthood, angiogenesis is activated as a reparative process during wound healing and following ischemia, and it plays a key role in tumor growth and metastasis as well as in inflammatory diseases and diabetic retinopathy. MicroRNAs (miRNAs) are endogenous, small, noncoding RNAs that negatively control gene expression of target mRNAs. In this paper, we aim at describing the role of miRNAs in postischemic angiogenesis. First, we will describe the regulation and the expression of miRNAs in endothelial cells. Then, we will analyze the role of miRNAs in postischemic vascular repair. Finally, we will discuss the role of circulating miRNAs as potential biomarkers in ischemic diseases.


2021 ◽  
Vol 12 (4) ◽  
Author(s):  
Lin Bai ◽  
Yafei Wang ◽  
Jia Huo ◽  
Shuai Li ◽  
Ya Wen ◽  
...  

AbstractAmyotrophic lateral sclerosis (ALS) is a progressive neurodegenerative disease caused by motoneuron loss, for which there is currently no effective treatment. Statins, as inhibitors of 3-hydroxy-3-methylglutaryl-CoA (HMG-CoA) reductase, are used as drugs for treatment for a variety of disease such as ischemic diseases, neurodegenerative diseases, cancer, and inflammation. However, our previous evidence has demonstrated that simvastatin leads to cytotoxicity in NSC34-hSOD1G93A cells by aggravating the impairment of autophagic flux, but the role of simvastatin in ALS model remains elusive. In present study, we reported that after simvastatin treatment, SOD1G93A mice showed early onset of the disease phenotype and shortened life span, with aggravated autophagic flux impairment and increased aggregation of SOD1 protein in spinal cord motoneurons (MNs) of SOD1G93A mice. In addition, simvastatin repressed the ability of Rab7 localization on the membrane by inhibiting isoprenoid synthesis, leading to impaired late stage of autophagic flux rather than initiation. This study suggested that simvastatin significantly worsened impairment of late autophagic flux, resulting in massive MNs death in spinal cord and accelerated disease progression of SOD1G93A mice. Together, these findings might imply a potential risk of clinic application of statins in ALS.


2014 ◽  
Vol 12 (3) ◽  
pp. 13-19 ◽  
Author(s):  
Yelena Vasilyevna Pozhilova ◽  
Vasiliy Egorovich Novikov ◽  
Olga Sergeevna Levchenkova

The review is devoted to the role of mitochondrial Ca2+-dependent pore (mPTP) in the regulation of metabolic processes in cells under physiological and pathological conditions. The mechanisms of reperfusion injury in the postischemic period involving mPTP are discussed in the paper. The possibilities of pharmacological regulation of metabolic and functional processes in cells by target action on mPTP work are assessed. This approach allows to regulate key cell functions, stimulating either mechanisms of adaptation and survival in extreme conditions or apoptosis. Pharmacological modulators of the mitochondrial pore as drugs have promising value for treatment of ischemic diseases as well as tumor therapy.


Cytotherapy ◽  
2018 ◽  
Vol 20 (10) ◽  
pp. 1204-1219 ◽  
Author(s):  
WENTING WANG ◽  
ZIJIAN LI ◽  
JUAN FENG

Sign in / Sign up

Export Citation Format

Share Document