scholarly journals The regulatory role of mitochondrial pora and the possibility of its pharmacological modulation

2014 ◽  
Vol 12 (3) ◽  
pp. 13-19 ◽  
Author(s):  
Yelena Vasilyevna Pozhilova ◽  
Vasiliy Egorovich Novikov ◽  
Olga Sergeevna Levchenkova

The review is devoted to the role of mitochondrial Ca2+-dependent pore (mPTP) in the regulation of metabolic processes in cells under physiological and pathological conditions. The mechanisms of reperfusion injury in the postischemic period involving mPTP are discussed in the paper. The possibilities of pharmacological regulation of metabolic and functional processes in cells by target action on mPTP work are assessed. This approach allows to regulate key cell functions, stimulating either mechanisms of adaptation and survival in extreme conditions or apoptosis. Pharmacological modulators of the mitochondrial pore as drugs have promising value for treatment of ischemic diseases as well as tumor therapy.

2021 ◽  
Vol 22 (4) ◽  
pp. 1503 ◽  
Author(s):  
Flora Brozzi ◽  
Romano Regazzi

Circular RNAs (circRNAs) constitute a large class of non-coding RNAs characterized by a covalently closed circular structure. They originate during mRNA maturation through a modification of the splicing process and, according to the included sequences, are classified as Exonic, Intronic, or Exonic-Intronic. CircRNAs can act by sequestering microRNAs, by regulating the activity of specific proteins, and/or by being translated in functional peptides. There is emerging evidence indicating that dysregulation of circRNA expression is associated with pathological conditions, including cancer, neurological disorders, cardiovascular diseases, and diabetes. The aim of this review is to provide a comprehensive and updated view of the most abundant circRNAs expressed in pancreatic islet cells, some of which originating from key genes controlling the differentiation and the activity of insulin-secreting cells or from diabetes susceptibility genes. We will particularly focus on the role of a group of circRNAs that contribute to the regulation of β-cell functions and that display altered expression in the islets of rodent diabetes models and of type 2 diabetic patients. We will also provide an outlook of the unanswered questions regarding circRNA biology and discuss the potential role of circRNAs as biomarkers for β-cell demise and diabetes development.


2019 ◽  
Vol 166 (1) ◽  
pp. 13-27 ◽  
Author(s):  
Hideki Nakamura ◽  
Robert DeRose ◽  
Takanari Inoue

Abstract As part of the ‘Central Dogma’ of molecular biology, the function of proteins and nucleic acids within a cell is determined by their primary sequence. Recent work, however, has shown that within living cells the role of many proteins and RNA molecules can be influenced by the physical state in which the molecule is found. Within living cells, both protein and RNA molecules are observed to condense into non-membrane-bound yet distinct structures such as liquid droplets, hydrogels and insoluble aggregates. These unique intracellular organizations, collectively termed biomolecular condensates, have been found to be vital in both normal and pathological conditions. Here, we review the latest studies that have developed molecular tools attempting to recreate artificial biomolecular condensates in living cells. We will describe their design principles, implementation and unique characteristics, along with limitations. We will also introduce how these tools can be used to probe and perturb normal and pathological cell functions, which will then be complemented with discussions of remaining areas for technological advance under this exciting theme.


Biomolecules ◽  
2021 ◽  
Vol 11 (7) ◽  
pp. 1058
Author(s):  
Ilias Kalafatakis ◽  
Domna Karagogeos

Oligodendrocytes, the myelin-making cells of the CNS, regulate the complex process of myelination under physiological and pathological conditions, significantly aided by other glial cell types such as microglia, the brain-resident, macrophage-like innate immune cells. In this review, we summarize how oligodendrocytes orchestrate myelination, and especially myelin repair after damage, and present novel aspects of oligodendroglial functions. We emphasize the contribution of microglia in the generation and regeneration of myelin by discussing their beneficial and detrimental roles, especially in remyelination, underlining the cellular and molecular components involved. Finally, we present recent findings towards human stem cell-derived preclinical models for the study of microglia in human pathologies and on the role of microbiome on glial cell functions.


Genes ◽  
2021 ◽  
Vol 12 (7) ◽  
pp. 994
Author(s):  
Mohamed Chamlali ◽  
Lise Rodat-Despoix ◽  
Halima Ouadid-Ahidouch

Known as a key effector in breast cancer (BC) progression, calcium (Ca2+) is tightly regulated to maintain the desired concentration to fine-tune cell functions. Ca2+ channels are the main actors among Ca2+ transporters that control the intracellular Ca2+ concentration in cells. It is well known that the basal Ca2+ concentration is regulated by both store-dependent and independent Ca2+ channels in BC development and progression. However, most of the literature has reported the role of store-dependent Ca2+ entry, and only a few studies are focusing on store-independent Ca2+ entry (SICE). In this review, we aim to summarize all findings on SICE in the BC progression field.


2014 ◽  
Vol 12 (2) ◽  
pp. 28-35 ◽  
Author(s):  
Vasiliy Egorovich Novikov ◽  
Olga Sergeevna Levchenkova

The review is devoted to the role of a number of mitochondrial factors in the regulation of cell adaptation to hypoxia and ischemia. The mechanisms of cell adaptation involving factors such as the mitochondrial ATP-dependent potassium channel, mitochondrial megapora, mitochondrial nitric oxide synthase, reactive oxygen species are discussed in the paper. The possibility of pharmacological regulation of cell adaptation with help of target action on mitochondrial components is proposed. This approach is a promising direction for drug discovery for correction of diseases with hypoxia and ischemia in their pathogenesis.


2019 ◽  
Vol 20 (14) ◽  
pp. 3513 ◽  
Author(s):  
Shinsaku Tokuda ◽  
Alan S. L. Yu

Epithelia act as a barrier to the external environment. The extracellular environment constantly changes, and the epithelia are required to regulate their function in accordance with the changes in the environment. It has been reported that a difference of the environment between the apical and basal sides of epithelia such as osmolality and hydrostatic pressure affects various epithelial functions including transepithelial transport, cytoskeleton, and cell proliferation. In this paper, we review the regulation of epithelial functions by the gradients of osmolality and hydrostatic pressure. We also examine the significance of this regulation in pathological conditions especially focusing on the role of the hydrostatic pressure gradient in the pathogenesis of carcinomas. Furthermore, we discuss the mechanism by which epithelia sense the osmotic and hydrostatic pressure gradients and the possible role of the tight junction as a sensor of the extracellular environment to regulate epithelial functions.


Author(s):  
Beth Burnside

The vertebrate photoreceptor provides a drammatic example of cell polarization. Specialized to carry out phototransduction at its distal end and to synapse with retinal interneurons at its proximal end, this long slender cell has a uniquely polarized morphology which is reflected in a similarly polarized cytoskeleton. Membranes bearing photopigment are localized in the outer segment, a modified sensory cilium. Sodium pumps which maintain the dark current critical to photosensory transduction are anchored along the inner segment plasma membrane between the outer segment and the nucleus.Proximal to the nucleus is a slender axon terminating in specialized invaginating synapses with other neurons of the retina. Though photoreceptor diameter is only 3-8u, its length from the tip of the outer segment to the synapse may be as great as 200μ. This peculiar linear cell morphology poses special logistical problems and has evoked interesting solutions for numerous cell functions. For example, the outer segment membranes turn over by means of a unique mechanism in which new disks are continuously added at the proximal base of the outer segment, while effete disks are discarded at the tip and phagocytosed by the retinal pigment epithelium. Outer segment proteins are synthesized in the Golgi near the nucleus and must be transported north through the inner segment to their sites of assembly into the outer segment, while synaptic proteins must be transported south through the axon to the synapse.The role of the cytoskeleton in photoreceptor motile processes is being intensely investigated in several laboratories.


2020 ◽  
Vol 16 (6) ◽  
pp. 846-853
Author(s):  
Raghunandan Purohith ◽  
Nagendra P.M. Nagalingaswamy ◽  
Nanjunda S. Shivananju

Metabolic syndrome is a collective term that denotes disorder in metabolism, symptoms of which include hyperglycemia, hyperlipidemia, hypertension, and endothelial dysfunction. Diet is a major predisposing factor in the development of metabolic syndrome, and dietary intervention is necessary for both prevention and management. The bioactive constituents of food play a key role in this process. Micronutrients such as vitamins, carotenoids, amino acids, flavonoids, minerals, and aromatic pigment molecules found in fruits, vegetables, spices, and condiments are known to have beneficial effects in preventing and managing metabolic syndrome. There exists a well-established relationship between oxidative stress and major pathological conditions such as inflammation, metabolic syndrome, and cancer. Consequently, dietary antioxidants are implicated in the remediation of these complications. The mechanism of action and targets of dietary antioxidants as well as their effects on related pathways are being extensively studied and elucidated in recent times. This review attempts a comprehensive study of the role of dietary carotenoids in alleviating metabolic syndromewith an emphasis on molecular mechanism-in the light of recent advances.


2016 ◽  
Vol 9 (4) ◽  
pp. 311-319 ◽  
Author(s):  
Abdullah Azmahani ◽  
Yasuhiro Nakamura ◽  
Keely M. McNamara ◽  
Hironobu Sasano

2021 ◽  
Vol 2 (2) ◽  
pp. 311-338
Author(s):  
Giulia Della Rosa ◽  
Clarissa Ruggeri ◽  
Alessandra Aloisi

Exosomes (EXOs) are nano-sized informative shuttles acting as endogenous mediators of cell-to-cell communication. Their innate ability to target specific cells and deliver functional cargo is recently claimed as a promising theranostic strategy. The glycan profile, actively involved in the EXO biogenesis, release, sorting and function, is highly cell type-specific and frequently altered in pathological conditions. Therefore, the modulation of EXO glyco-composition has recently been considered an attractive tool in the design of novel therapeutics. In addition to the available approaches involving conventional glyco-engineering, soft technology is becoming more and more attractive for better exploiting EXO glycan tasks and optimizing EXO delivery platforms. This review, first, explores the main functions of EXO glycans and associates the potential implications of the reported new findings across the nanomedicine applications. The state-of-the-art of the last decade concerning the role of natural polysaccharides—as targeting molecules and in 3D soft structure manufacture matrices—is then analysed and highlighted, as an advancing EXO biofunction toolkit. The promising results, integrating the biopolymers area to the EXO-based bio-nanofabrication and bio-nanotechnology field, lay the foundation for further investigation and offer a new perspective in drug delivery and personalized medicine progress.


Sign in / Sign up

Export Citation Format

Share Document