cancer and inflammation
Recently Published Documents


TOTAL DOCUMENTS

218
(FIVE YEARS 71)

H-INDEX

42
(FIVE YEARS 9)

2022 ◽  
Vol 13 (1) ◽  
Author(s):  
Jai Prakash Singh ◽  
Yang Li ◽  
Yi-Yun Chen ◽  
Shang-Te Danny Hsu ◽  
Rebecca Page ◽  
...  

AbstractT-Cell Protein Tyrosine Phosphatase (TCPTP, PTPN2) is a non-receptor type protein tyrosine phosphatase that is ubiquitously expressed in human cells. TCPTP is a critical component of a variety of key signaling pathways that are directly associated with the formation of cancer and inflammation. Thus, understanding the molecular mechanism of TCPTP activation and regulation is essential for the development of TCPTP therapeutics. Under basal conditions, TCPTP is largely inactive, although how this is achieved is poorly understood. By combining biomolecular nuclear magnetic resonance spectroscopy, small-angle X-ray scattering, and chemical cross-linking coupled with mass spectrometry, we show that the C-terminal intrinsically disordered tail of TCPTP functions as an intramolecular autoinhibitory element that controls the TCPTP catalytic activity. Activation of TCPTP is achieved by cellular competition, i.e., the intrinsically disordered cytosolic tail of Integrin-α1 displaces the TCPTP autoinhibitory tail, allowing for the full activation of TCPTP. This work not only defines the mechanism by which TCPTP is regulated but also reveals that the intrinsically disordered tails of two of the most closely related PTPs (PTP1B and TCPTP) autoregulate the activity of their cognate PTPs via completely different mechanisms.


2021 ◽  
Author(s):  
Olov Wallner ◽  
Armando Cázares-Körner ◽  
Emma Rose Scaletti ◽  
Geoffrey Masuyer ◽  
Tove Bekkhus ◽  
...  

8-oxo Guanine DNA Glycosylase 1 is the initiating enzyme within base excision repair and removes oxidized guanines from damaged DNA. Since unrepaired 8-oxoG could lead to G:C→T:A transversion, base removal is of the utmost importance for cells to ensure genomic integrity. For cells with elevat-ed levels of reactive oxygen species this dependency is further increased. In the past we and others have validated OGG1 as a target for inhibitors to treat cancer and inflammation. Here, we present the optimization campaign that led to the broadly used tool compound TH5487. Based on a high-throughput screen, we performed hit to lead expansion and arrived at potent and selective substituted N-piperidinyl-benzimidazolones. Using X-ray crystallography data, we describe the surprising bind-ing mode of the most potent member of the class, TH8535. Here, the N-Piperidinyl-linker adopts a chair instead of a boat conformation which was found for weaker analogues. We further demonstrate cellular target engagement and efficacy of TH8535 against a number of cancer cell lines.


2021 ◽  
Vol 6 (1) ◽  
Author(s):  
Xiaoyi Hu ◽  
Jing li ◽  
Maorong Fu ◽  
Xia Zhao ◽  
Wei Wang

AbstractThe Janus kinase/signal transducer and activator of transcription (JAK/STAT) signaling pathway was discovered more than a quarter-century ago. As a fulcrum of many vital cellular processes, the JAK/STAT pathway constitutes a rapid membrane-to-nucleus signaling module and induces the expression of various critical mediators of cancer and inflammation. Growing evidence suggests that dysregulation of the JAK/STAT pathway is associated with various cancers and autoimmune diseases. In this review, we discuss the current knowledge about the composition, activation, and regulation of the JAK/STAT pathway. Moreover, we highlight the role of the JAK/STAT pathway and its inhibitors in various diseases.


Biomolecules ◽  
2021 ◽  
Vol 11 (11) ◽  
pp. 1689
Author(s):  
Abdelaziz Ghanemi ◽  
Mayumi Yoshioka ◽  
Jonny St-Amand

Secreted protein acidic and rich in cysteine (SPARC) is expressed in diverse tissues and plays roles in various biological functions and processes. Increased serum levels of SPARC or its gene overexpression have been reported following numerous physiological and pathological changes including injuries, exercise, regeneration, obesity, cancer, and inflammation. Such expression pattern interrelation between these biological changes and the SPARC expression/secretion points to it as a biomarker. This property could lead to a variety of potential applications ranging from mechanistic studies and animal model validation to the clinical and therapeutic evaluation of both disease prognosis and pharmacological agents.


Biomolecules ◽  
2021 ◽  
Vol 11 (11) ◽  
pp. 1671
Author(s):  
William A. Denny ◽  
Jack U. Flanagan

The discoidin domain receptor tyrosine kinases DDR1 and DDR2 are distinguished from other kinase enzymes by their extracellular domains, which interact with collagen rather than with peptidic growth factors, before initiating signaling via tyrosine phosphorylation. They share significant sequence and structural homology with both the c-Kit and Bcr-Abl kinases, and so many inhibitors of those kinases are also effective. Nevertheless, there has been an extensive research effort to develop potent and specific DDR inhibitors. A key interaction for many of these compounds is H-bonding to Met-704 in a hydrophobic pocket of the DDR enzyme. The most widespread use of DDR inhibitors has been for cancer therapy, but they have also shown effectiveness in animal models of inflammatory conditions such as Alzheimer’s and Parkinson’s diseases, and in chronic renal failure and glomerulonephritis.


2021 ◽  
Vol 9 (11) ◽  
pp. 2287
Author(s):  
Marienela Y. Heredia ◽  
Jason M. Rauceo

Integral membrane proteins from the ancient SPFH (stomatin, prohibitin, flotillin, HflK/HflC) protein superfamily are found in nearly all living organisms. Mammalian SPFH proteins are primarily associated with mitochondrial functions but also coordinate key processes such as ion transport, signaling, and mechanosensation. In addition, SPFH proteins are required for virulence in parasites. While mitochondrial functions of SPFH proteins are conserved in fungi, recent evidence has uncovered additional roles for SPFH proteins in filamentation and stress signaling. Inhibitors that target SPFH proteins have been successfully used in cancer and inflammation treatment. Thus, SPFH proteins may serve as a potential target for novel antifungal drug development. This review article surveys SPFH function in various fungal species with a special focus on the most common human fungal pathogen, Candida albicans.


2021 ◽  
Vol 22 (20) ◽  
pp. 11136
Author(s):  
Xiaojie Chu ◽  
Zehua Sun ◽  
Du-San Baek ◽  
Wei Li ◽  
John W. Mellors ◽  
...  

Neutrophil elastase (NE) is a serine protease released during neutrophil maturation. High levels of NE are related to lung tissue damage and poor prognosis in cancer; thus, NE is a potential target for therapeutic immunotherapy for multiple lung diseases and cancers. Here, we isolate and characterize two high-affinity, specific, and noncompetitive anti-NE antibodies Fab 1C10 and VH 1D1.43 from two large phage-displayed human Fab and VH libraries. After fusion with human IgG1 Fc, both of them (VH-Fc 1D1.43 and IgG1 1C10) inhibit NE enzymatic activity with VH-Fc 1D1.43 showing comparable inhibitory effects to that of the small molecule NE inhibitor SPCK and IgG1 1C10 exhibiting even higher (2.6-fold) activity than SPCK. Their epitopes, as mapped by peptide arrays combined with structural modeling, indicate different mechanisms for blocking NE activity. Both VH-Fc and IgG1 antibodies block NE uptake by cancer cells and fibroblast differentiation. VH-Fc 1D1.43 and IgG1 1C10 are promising for the antibody-based immunotherapy of cancer and inflammatory diseases.


Molecules ◽  
2021 ◽  
Vol 26 (19) ◽  
pp. 5735
Author(s):  
Maria Grazia Signorello ◽  
Federica Rapetti ◽  
Elda Meta ◽  
Adama Sidibè ◽  
Olga Bruno ◽  
...  

(1) Background: different previously synthesized pyrazoles and imidazo-pyrazoles showed interesting anti-angiogenic action, being able to interfere with ERK1/2, AKT and p38MAPK phosphorylation in different manners and with different potency; (2) Methods: here, a new small compound library, endowed with the same differently decorated chemical scaffolds, has been synthetized to obtain new agents able to inhibit different pathways involved in inflammation, cancer and human platelet aggregation. (3) Results: most of the new synthesized derivatives resulted able to block ROS production, platelet aggregation and p38MAPK phosphorylation both in platelets and Human Umbilical Vein Endothelial cells (HUVEC). This paves the way for the development of new agents with anti-angiogenic activity.


2021 ◽  
Vol 22 (18) ◽  
pp. 9664
Author(s):  
Jia Ying Brenda Tan ◽  
Bo Kyeong Yoon ◽  
Nam-Joon Cho ◽  
Jasmina Lovrić ◽  
Mario Jug ◽  
...  

There is enormous interest in utilizing biologically active fatty acids and monoglycerides to treat phospholipid membrane-related medical diseases, especially with the global health importance of membrane-enveloped viruses and bacteria. However, it is difficult to practically deliver lipophilic fatty acids and monoglycerides for therapeutic applications, which has led to the emergence of lipid nanoparticle platforms that support molecular encapsulation and functional presentation. Herein, we introduce various classes of lipid nanoparticle technology and critically examine the latest progress in utilizing lipid nanoparticles to deliver fatty acids and monoglycerides in order to treat medical diseases related to infectious pathogens, cancer, and inflammation. Particular emphasis is placed on understanding how nanoparticle structure is related to biological function in terms of mechanism, potency, selectivity, and targeting. We also discuss translational opportunities and regulatory needs for utilizing lipid nanoparticles to deliver fatty acids and monoglycerides, including unmet clinical opportunities.


Sign in / Sign up

Export Citation Format

Share Document