scholarly journals Downregulation of S100A4 Alleviates Cardiac Fibrosis via Wnt/β -Catenin Pathway in Mice

2018 ◽  
Vol 46 (6) ◽  
pp. 2551-2560 ◽  
Author(s):  
LiJun Qian ◽  
Jian Hong ◽  
YanMei Zhang ◽  
MengLin Zhu ◽  
XinChun Wang ◽  
...  

Background/Aims: Cardiac fibrosis is a pathological change leading to cardiac remodeling during the progression of myocardial ischemic diseases, and its therapeutic strategy remains to be explored. S100A4, a calcium-binding protein, participates in fibrotic diseases with an unclear mechanism. This study aimed to investigate the role of S100A4 in cardiac fibrosis. Methods: Cardiac fibroblasts from neonatal C57BL/6 mouse hearts were isolated and cultured. Myocardial infarction was induced by ligating the left anterior descending coronary artery (LAD). The ligation was not performed in the sham group. A volume of 5×105pfu/g adenovirus or 5 µM/g ICG-001 was intramyocardially injected into five parts bordering the infarction zone or normal region. We used Western blotting, quantitative RT-PCR, immunofluorescence, immunohistochemistry and Masson’s trichrome staining to explore the function of S100A4. Results: We found significant increases of S100A4 level and cardiac fibrosis markers, and β-catenin signaling activation in vitro and in vivo. In addition, knockdown of S100A4 significantly reduced cardiac fibrosis and β-catenin levels. Moreover, the expression of S100A4 decreased after ICG-001 inhibited β-catenin signal pathway. Conclusion: Downregulation of S100A4 alleviates cardiac fibrosis via Wnt/β -catenin pathway in mice. S100A4 may be a therapeutic target of cardiac fibrosis.


2020 ◽  
Vol 11 ◽  
Author(s):  
Bihui Luo ◽  
Zhiyu He ◽  
Shijun Huang ◽  
Jinping Wang ◽  
Dunzheng Han ◽  
...  

Rationale: Cardiac fibrosis is observed in nearly every form of myocardial disease. Long non-coding RNAs (lncRNAs) have been shown to play an important role in cardiac fibrosis, but the detailed molecular mechanism remains unknown.Object: We aimed at characterizing lncRNA 554 expression in murine cardiac fibroblasts (CFs) after myocardial infarction (MI) to identify CF-enriched lncRNA and investigate its function and contribution to cardiac fibrosis and function.Methods and Results: In this study, we identified lncRNA NONMMUT022554 (lncRNA 554) as a regulator of MI-induced cardiac fibrosis. We found that lncRNA 554 was significantly up-regulated in the mouse hearts following MI. Further study showed that lncRNA 554 was predominantly expressed in cardiac fibroblasts, indicating a potential role of lncRNA 554 in cardiac fibrosis. In vitro knockdown of lncRNA 554 by siRNA suppressed fibroblasts migration and expression of extracellular matrix (ECM); while overexpression of lncRNA 554 promoted expression of ECM genes. Consistently, lentivirus mediated in vivo knockdown of lncRNA 554 could inhibit cardiac fibrosis and improve cardiac function in mouse model of MI. More importantly, TGF-β1 inhibitor (TEW-7197) could reverse the pro-fibrotic function of lncRNA 554 in CFs. This suggests that the effects of lncRNA 554 on cardiac fibrosis is TGF-β1 dependent.Conclusion: Collectively, our study illustrated the role of lncRNA 554 in cardiac fibrosis, suggested that lncRNA 554 might be a novel target for cardiac fibrosis.



2015 ◽  
Vol 309 (4) ◽  
pp. H532-H542 ◽  
Author(s):  
Kar Wey Yong ◽  
YuHui Li ◽  
GuoYou Huang ◽  
Tian Jian Lu ◽  
Wan Kamarul Zaman Wan Safwani ◽  
...  

Cardiac myofibroblast differentiation, as one of the most important cellular responses to heart injury, plays a critical role in cardiac remodeling and failure. While biochemical cues for this have been extensively investigated, the role of mechanical cues, e.g., extracellular matrix stiffness and mechanical strain, has also been found to mediate cardiac myofibroblast differentiation. Cardiac fibroblasts in vivo are typically subjected to a specific spatiotemporally changed mechanical microenvironment. When exposed to abnormal mechanical conditions (e.g., increased extracellular matrix stiffness or strain), cardiac fibroblasts can undergo myofibroblast differentiation. To date, the impact of mechanical cues on cardiac myofibroblast differentiation has been studied both in vitro and in vivo. Most of the related in vitro research into this has been mainly undertaken in two-dimensional cell culture systems, although a few three-dimensional studies that exist revealed an important role of dimensionality. However, despite remarkable advances, the comprehensive mechanisms for mechanoregulation of cardiac myofibroblast differentiation remain elusive. In this review, we introduce important parameters for evaluating cardiac myofibroblast differentiation and then discuss the development of both in vitro (two and three dimensional) and in vivo studies on mechanoregulation of cardiac myofibroblast differentiation. An understanding of the development of cardiac myofibroblast differentiation in response to changing mechanical microenvironment will underlie potential targets for future therapy of cardiac fibrosis and failure.



2019 ◽  
Vol 133 (17) ◽  
pp. 1845-1856 ◽  
Author(s):  
Kun Yang ◽  
Jiaran Shi ◽  
Zhujun Hu ◽  
Xiaosheng Hu

Abstract Cardiac fibrosis is a common pathological feature of many cardiovascular diseases. The regulatory mechanisms of miRNAs in cardiac fibrosis are still unknown. Previous studies on miR-214-3p in cardiac fibroblasts reached contradictory conclusions. Thus the role of miR-214-3p in cardiac fibrosis deserves further exploration. Using a combination of in vitro and in vivo studies, we identified miR-214-3p as an important regulator of cardiac fibrosis, and the proliferation and activation of cardiac fibroblasts. We demonstrated that the expression of miR-214-3p is down-regulated in TGF-β1-treated myofibroblasts and transverse aortic constriction (TAC)-induced murine model. Additionally, miR-214-3pflox/flox/FSP1-cre mice and miR-214-3pwt/wt/FSP1-cre mice were subjected to TAC operation or sham operation, and the conditional knockout of miR-214-3p in cardiac fibroblasts aggravates TAC-induced cardiac fibrosis. In vitro, our results indicate that miR-214-3p is an important repressor for fibroblasts proliferation and fibroblast-to-myofibroblast transition by functionally targeting NOD-like receptor family CARD domain containing 5 (NLRC5). In conclusion, our findings show that the deficiency of miR-214-3p exacerbates cardiac fibrosis and reveal a novel miR-214-3p/NLRC5 axis in the regulation of cardiac fibrosis.



Endocrinology ◽  
2012 ◽  
Vol 153 (8) ◽  
pp. 3692-3700 ◽  
Author(s):  
Hui-Ping Gu ◽  
Sen Lin ◽  
Ming Xu ◽  
Hai-Yi Yu ◽  
Xiao-Jun Du ◽  
...  

Myocardial fibrosis is a key pathological change in a variety of heart diseases contributing to the development of heart failure, arrhythmias, and sudden death. Recent studies have shown that relaxin prevents and reverses cardiac fibrosis. Endogenous expression of relaxin was elevated in the setting of heart disease; the extent of such up-regulation, however, is insufficient to exert compensatory actions, and the mechanism regulating relaxin expression is poorly defined. In the rat relaxin-1 (RLN1, Chr1) gene promoter region we found presence of repeated guanine (G)-rich sequences, which allowed formation and stabilization of G-quadruplexes with the addition of a G-quadruplex interactive ligand berberine. The G-rich sequences and the G-quadruplexes were localized adjacent to the binding motif of signal transducer and activator of transcription (STAT)3, which negatively regulates relaxin expression. Thus, we hypothesized that the formation and stabilization of G-quadruplexes by berberine could influence relaxin expression. We found that berberine-induced formation of G-quadruplexes did increase relaxin gene expression measured at mRNA and protein levels. Formation of G-quadruplexes significantly reduced STAT3 binding to the promoter of relaxin gene. This was associated with consequent increase in the binding of RNA polymerase II and STAT5a to relaxin gene promoter. In cardiac fibroblasts and rats treated with angiotensin II, berberine was found to suppress fibroblast activation, collagen synthesis, and extent of cardiac fibrosis through up-regulating relaxin. The antifibrotic action of berberine in vitro and in vivo was similar to that by exogenous relaxin. Our findings document a novel therapeutic strategy for fibrosis through up-regulating expression of endogenous relaxin.



2016 ◽  
Vol 119 (suppl_1) ◽  
Author(s):  
Masataka Nishiga ◽  
Takahiro Horie ◽  
Yasuhide Kuwabara ◽  
Osamu Baba ◽  
Tetsushi Nakao ◽  
...  

Background: A highly conserved microRNA, miR-33 is considered as a potential therapeutic target for atherosclerosis, because recent reports, including ours, indicated miR-33 has atherogenic effects by reducing HDL-C. However, the functions of miR-33 in heart failure remain to be elucidated. Methods and results: To clarify the functions of miR-33 involved in cardiac hypertrophy and fibrosis in vivo, we investigated the responses to pressure overload by transverse aortic constriction (TAC) in miR-33 deficient (KO) mice. When subjected to TAC, miR-33 expression level was significantly up-regulated in wild-type (WT) left ventricles, whereas miR-33 KO hearts displayed no less hypertrophic responses than WT hearts. However, interestingly, histological and gene expression analyses showed ameliorated cardiac fibrosis in miR-33 KO hearts compared to WT hearts. Furthermore, we generated cardiac fibroblast specific miR-33 deficient mice, which also showed ameliorated cardiac fibrosis when they were subjected to TAC. We also found that cardiac fibroblasts were mainly responsible for miR-33 expression in the heart, because its expression was about 4-folds higher in isolated primary cardiac fibroblasts than cardiomyocytes. Deficiency of miR-33 impaired cell proliferation in primary fibroblasts, which was considered due to altered lipid raft cholesterol content by up-regulated ATP-binding cassette transporter A1/G1. Conclusion: Deficiency of miR-33 impaired fibroblast proliferation in vitro, and ameliorated cardiac fibrosis induced by pressure overload in vivo.



Hypertension ◽  
2014 ◽  
Vol 64 (suppl_1) ◽  
Author(s):  
Hongmei Peng ◽  
Oscar Carretero ◽  
Xiao-Ping Yang ◽  
Pablo Nakagawa ◽  
Jiang Xu ◽  
...  

Elevated interleukin-4 (IL-4) levels are positively related to cardiac fibrosis in heart failure and hypertension. Using Balb/c exhibiting high circulating IL-4, Balb/c- Il4 tm2Nnt (IL-4 knockout with Balb/c background, IL-4 -/- ) and C57BL/6 mice, as well as cultured cardiac fibroblasts (CFs), we hypothesized that 1) high levels of IL-4 result in cardiac fibrosis, making the heart susceptible to angiotensin II (Ang II)-induced damage, and 2) IL-4 potently stimulates collagen production by CFs. Each strain (9- to 12-week old male) received vehicle or Ang II (1.4 mg/kg/day, s.c. via osmotic mini-pump) for 8 weeks. Cardiac fibrosis and function were determined by histology and echocardiography, respectively. Compared to C57BL/6, Balb/c mice had doubled interstitial collagen in the heart, enlarged left ventricle and decreased cardiac function along with elevated cardiac IL-4 protein (1.00±0.08 in C57BL/6 vs 2.61±0.46 in Balb/c, p <0.05); all those changes were significantly attenuated in IL-4 -/- (Table 1). Ang II further deteriorated cardiac fibrosis and dysfunction in Balb/c; these detrimental effects were attenuated in IL-4 -/- , although the three strains had a similar level of hypertension. In vitro study revealed that IL-4Rα was constitutively expressed in CFs (Western blot), and IL-4 potently stimulated collagen production by CFs (hydroxproline assay, from 18.89±0.85 to 38.81±3.61 μg/mg at 10 ng/ml, p <0.01). Our study demonstrates for the first time that IL-4, as a potent pro-fibrotic cytokine in the heart, contributes to cardiac fibrotic remodeling and dysfunction. Thus IL-4 may be a potential therapeutic target for cardiac fibrosis and dysfunction.



2018 ◽  
Vol 132 (19) ◽  
pp. 2117-2120
Author(s):  
Michael J. Boyer ◽  
Satoru Eguchi

Hypertension is a significant risk factor for the development of cardiovascular ailments, including ischemic heart disease and diastolic dysfunction. In a recent issue of Clinical Science, Li et al. [Clin. Sci. (2018) 132, 1855–1874] report that β-2 microglobulin (β2M) is a novel secreted soluble factor released by cardiac myocytes during pressure overload that promotes profibrotic gene expression in cardiac fibroblasts both in vitro and in vivo. Their study further identifies elevated β2M levels as a possible biomarker for hypertensive patients with cardiac complications. The authors propose a mechanism that mechanically stretched cardiomyocytes release soluble β2M which, through paracrine communication with cardiac fibroblasts, transactivates epidermal growth factor receptor (EGFR) to initiate acute signal transduction and up-regulate profibrotic genes, thereby promoting fibrosis. Here, we will discuss the background, significance of the study, alternative mechanisms, and future directions.



2018 ◽  
Vol 115 (2) ◽  
pp. 315-327 ◽  
Author(s):  
Elke Dworatzek ◽  
Shokoufeh Mahmoodzadeh ◽  
Cindy Schriever ◽  
Kana Kusumoto ◽  
Lisa Kramer ◽  
...  

Abstract Aims Sex differences in cardiac fibrosis point to the regulatory role of 17β-Estradiol (E2) in cardiac fibroblasts (CF). We, therefore, asked whether male and female CF in rodent and human models are differentially susceptible to E2, and whether this is related to sex-specific activation of estrogen receptor alpha (ERα) and beta (ERβ). Methods and results In female rat CF (rCF), 24 h E2-treatment (10−8  M) led to a significant down-regulation of collagen I and III expression, whereas both collagens were up-regulated in male rCF. E2-induced sex-specific collagen regulation was also detected in human CF, indicating that this regulation is conserved across species. Using specific ERα- and ERβ-agonists (10−7 M) for 24 h, we identified ERα as repressive and ERβ as inducing factor in female and male rCF, respectively. In addition, E2-induced ERα phosphorylation at Ser118 only in female rCF, whereas Ser105 phosphorylation of ERβ was exclusively found in male rCF. Further, in female rCF we found both ER bound to the collagen I and III promoters using chromatin immunoprecipitation assays. In contrast, in male rCF only ERβ bound to both promoters. In engineered connective tissues (ECT) from rCF, collagen I and III mRNA were down-regulated in female ECT and up-regulated in male ECT by E2. This was accompanied by an impaired condensation of female ECT, whereas male ECT showed an increased condensation and stiffness upon E2-treatment, analysed by rheological measurements. Finally, we confirmed the E2-effect on both collagens in an in vivo mouse model with ovariectomy for E2 depletion, E2 substitution, and pressure overload by transverse aortic constriction. Conclusion The mechanism underlying the sex-specific regulation of collagen I and III in the heart appears to involve E2-mediated differential ERα and ERβ signaling in CFs.



2017 ◽  
Author(s):  
Anuradha Vajjala ◽  
Debabrata Biswas ◽  
Kelvin Kian Long Chong ◽  
Wei Hong Tay ◽  
Emanuel Hanski ◽  
...  

AbstractGroup A Streptococcus (GAS) is a human pathogen that causes infections ranging from mild to fulminant and life-threatening. Biofilms have been implicated in acute GAS soft-tissue infections such as necrotizing fasciitis (NF). However, most in vitro models used to study GAS biofilms have been designed to mimic chronic infections and insufficiently recapitulate in vivo conditions and the host-pathogen interactions that might influence biofilm formation. Here we establish and characterize an in vitro model of GAS biofilm development on mammalian cells that simulates microcolony formation observed in a murine model of human NF. We show that on mammalian cells, GAS forms dense aggregates that display hallmark biofilm characteristics including a three-dimensional architecture and enhanced tolerance to antibiotics. In contrast to abiotic-grown biofilms, host-associated biofilms require the expression of secreted GAS streptolysins O and S (SLO, SLS) resulting in the release of a host-associated biofilm promoting-factor(s). Supernatants from GAS-infected mammalian cells or from cells treated with endoplasmic reticulum (ER) stressors restore biofilm formation to an SLO and SLS null mutant that is otherwise attenuated in biofilm formation on cells, together suggesting a role for streptolysin-induced ER stress in this process. In an in vivo mouse model, the streptolysin-null mutant is attenuated in both microcolony formation and bacterial spread, but pre-treatment of softtissue with an ER-stressor restores the ability of the mutant to form wild type like microcolonies that disseminate throughout the soft tissue. Taken together, we have identified a new role of streptolysin-driven ER stress in GAS biofilm formation and NF disease progression.Significance StatementAlthough it is well-accepted that bacterial biofilms are associated with many chronic infections, little is known about the mechanisms by which group A Streptococcus (GAS) biofilms contribute to acute soft tissue-invasive diseases like necrotizing fasciitis (NF). In this study, we establish a physiologically relevant in vitro model to study GAS biofilm formation on mammalian cells and validate our findings in a mouse model that mimics human NF. This study demonstrates a novel role of GAS streptolysin-mediated ER stress in the development and spread of GAS biofilms in acute softtissue infections. We also show that biofilm formation depends on the release of a host-associated factor that promotes microcolony formation and GAS dissemination in vivo.



2019 ◽  
Vol 9 (1) ◽  
Author(s):  
Di Xiao ◽  
Ruiye Bi ◽  
Xianwen Liu ◽  
Jie Mei ◽  
Nan Jiang ◽  
...  

Abstract Notch signaling is involved in the early onset of osteoarthritis. The aim of this study was to investigate the role of Notch signaling changes during proliferation and differentiation of chondrocyte, and to testify the mechanism of MMP-13 regulation by Notch and Runx2 expression changes during osteoarthritis. In this study, Chondrocytes were isolated from rat knee cartilages. Notch signaling was activated/inhibited by Jagged-1/DAPT. Proliferative capacity of Chondrocytes was analyzed by CCK-8 staining and EdU labeling. ColX, Runx2 and MMP-13 expressions were analyzed as cell differentiation makers. Then, Runx2 gene expression was interfered using lentivirus transfection (RNAi) and was over-expressed by plasmids transfected siRNA in chondrocytes, and MMP-13 expression was analyzed after Jagged-1/DAPT treatment. In vivo, an intra-articular injection of shRunx2 lentivirus followed with Jagged1/DAPT treatments was performed in rats. MMP-13 expression in articular cartilage was detected by immunohistochemistry. Finally, MMP-13 expression changes were analyzed in chondrocytes under IL-1β stimulation. Our findings showed that, CCK-8 staining and EdU labeling revealed suppression of cell proliferation by Notch signaling activation after Jagged-1 treatment in chondrocytes. Promoted differentiation was also observed, characterized by increased expressions of Col X, MMP-13 and Runx2. Meanwhile, Sox9, aggrecan and Col II expressions were down-regulated. The opposite results were observed in Notch signaling inhibited cells by DAPT treatment. In addition, Runx2 RNAi significantly attenuated the ‘regulatory sensitivity’ of Notch signaling on MMP-13 expression both in vitro and in vivo. However, we found there wasn’t significant changes of this ‘regulatory sensitivity’ of Notch signaling after Runx2 over-expression. Under IL-1β circumstance, MMP-13 expression could be reduced by both DAPT treatment and Runx2 RNAi, while Runx2 interference also attenuated the ‘regulatory sensitivity’ of Notch in MMP-13 under IL-1β stimulation. In conclusion, Notch signaling is an important regulator on rat chondrocyte proliferation and differentiation, and this regulatory effect was partially mediated by proper Runx2 expression under both normal and IL-1β circumstances. In the meanwhile, DAPT treatment could effectively suppress expression of MMP-13 stimulated by IL-1 β.



Sign in / Sign up

Export Citation Format

Share Document