fibrotic diseases
Recently Published Documents


TOTAL DOCUMENTS

223
(FIVE YEARS 100)

H-INDEX

38
(FIVE YEARS 6)

2022 ◽  
Vol 12 ◽  
Author(s):  
Nan Li ◽  
Shan Shan ◽  
Xiu-Qin Li ◽  
Ting-Ting Chen ◽  
Meng Qi ◽  
...  

G protein-coupled receptor kinase 2 (GRK2), an important subtype of GRKs, specifically phosphorylates agonist-activated G protein-coupled receptors (GPCRs). Besides, current research confirms that it participates in multiple regulation of diverse cells via a non-phosphorylated pathway, including interacting with various non-receptor substrates and binding partners. Fibrosis is a common pathophysiological phenomenon in the repair process of many tissues due to various pathogenic factors such as inflammation, injury, drugs, etc. The characteristics of fibrosis are the activation of fibroblasts leading to myofibroblast proliferation and differentiation, subsequent aggerate excessive deposition of extracellular matrix (ECM). Then, a positive feedback loop is occurred between tissue stiffness caused by ECM and fibroblasts, ultimately resulting in distortion of organ architecture and function. At present, GRK2, which has been described as a multifunctional protein, regulates copious signaling pathways under pathophysiological conditions correlated with fibrotic diseases. Along with GRK2-mediated regulation, there are diverse effects on the growth and apoptosis of different cells, inflammatory response and deposition of ECM, which are essential in organ fibrosis progression. This review is to highlight the relationship between GRK2 and fibrotic diseases based on recent research. It is becoming more convincing that GRK2 could be considered as a potential therapeutic target in many fibrotic diseases.


2022 ◽  
Author(s):  
MICHAEL John Victor WHITE ◽  
Michal Raczy ◽  
Erica Budina ◽  
Ani Solanki ◽  
Zheng Jenny Zhang ◽  
...  

Fibrotic diseases are involved in 45% of deaths in the United States. In particular, fibrosis of the kidney and lung are major public health concerns due to their high prevalence and lack of existing treatment options. Here, we harness the pathophysiological features of fibrotic diseases, namely leaky vasculature and aberrant extracellular matrix (ECM) protein deposition (i.e. collagen), to target an anti-fibrotic biologic and a small molecule drug to disease sites of fibrosis, thus improving their therapeutic potential in mouse models of lung and kidney fibrosis. First, we identify and validate collagen-targeting drug delivery systems that preferentially accumulate in the diseased organs: von Willebrand Factor's A3 domain (VWF-A3) and decorin-derived collagen-binding peptide-conjugated micelles (CBP-micelles). We then engineer and recombinantly express novel candidate biologic therapies based on the anti-inflammatory cytokine IL-10: A3-IL-10 and A3-Serum Albumin-IL-10 (A3-SA-IL-10). Simultaneously, we stably encapsulate the potential anti-fibrotic water-insoluble drug, rapamycin, in CBP-micelles. We show that these novel formulations of therapeutics bind to collagen in vitro and that their efficacy in mouse models of lung and kidney fibrosis is improved, compared to free, untargeted drugs. Our results demonstrate that collagen-targeted anti-fibrotic drugs may be next generation therapies of high clinical potential.


2022 ◽  
pp. 27-85
Author(s):  
Giulio Gabbiani ◽  
Matteo Coen ◽  
Fabio Zampieri
Keyword(s):  

Pharmaceutics ◽  
2021 ◽  
Vol 14 (1) ◽  
pp. 85
Author(s):  
Alan B. Dogan ◽  
Nathan A. Rohner ◽  
Julianne N. P. Smith ◽  
Jessica A. Kilgore ◽  
Noelle S. Williams ◽  
...  

As the prevalence of age-related fibrotic diseases continues to increase, novel antifibrotic therapies are emerging to address clinical needs. However, many novel therapeutics for managing chronic fibrosis are small-molecule drugs that require frequent dosing to attain effective concentrations. Although bolus parenteral administrations have become standard clinical practice, an extended delivery platform would achieve steady-state concentrations over a longer time period with fewer administrations. This study lays the foundation for the development of a sustained release platform for the delivery of (+)SW033291, a potent, small-molecule inhibitor of the 15-hydroxyprostaglandin dehydrogenase (15-PGDH) enzyme, which has previously demonstrated efficacy in a murine model of pulmonary fibrosis. Herein, we leverage fine-tuned cyclodextrin microparticles—specifically, β-CD microparticles (β-CD MPs)—to extend the delivery of the 15-PGDH inhibitor, (+)SW033291, to over one week.


2021 ◽  
Author(s):  
Tiago Carvalheiro ◽  
Wioleta Marut ◽  
M. Inês Pascoal Ramos ◽  
Samuel García ◽  
Devan Fleury ◽  
...  

SummaryTissue repair is disturbed in fibrotic diseases like systemic sclerosis (SSc), where the deposition of large amounts of extracellular matrix components such as collagen interferes with organ function. LAIR-1 is an inhibitory collagen receptor highly expressed on tissue immune cells. We questioned whether in SSc, impaired LAIR-1-collagen interaction is contributing to the ongoing inflammation and fibrosis.We found that SSc patients do not have an intrinsic defect in LAIR-1 expression or function. Instead, fibroblasts from SSc patients deposit disorganized collagen products in vitro, which are dysfunctional LAIR-1 ligands. This can be mimicked in healthy fibroblast stimulated by soluble factors that drive inflammation and fibrosis in SSc and is dependent of matrix metalloproteinases and platelet-derived growth factor receptor signaling.In support of a non-redundant role of LAIR-1 in the control of fibrosis, we found that LAIR-1-deficient mice have increased skin fibrosis in the bleomycin mouse model for SSc. Thus, LAIR-1 represents an essential control mechanism for tissue repair. In fibrotic disease, excessive collagen degradation may lead to a disturbed feedback loop. The presence of functional LAIR-1 in patients provides a therapeutic opportunity to reactivate this intrinsic negative feedback mechanism in fibrotic diseases.Abstract Figure


2021 ◽  
Vol 8 (1) ◽  
pp. e001026
Author(s):  
Tamera J Corte ◽  
Lisa Lancaster ◽  
Jeffrey J Swigris ◽  
Toby M Maher ◽  
Jonathan G Goldin ◽  
...  

IntroductionIdiopathic pulmonary fibrosis (IPF) and non-IPF, progressive fibrotic interstitial lung diseases (PF-ILD), are associated with a progressive loss of lung function and a poor prognosis. Treatment with antifibrotic agents can slow, but not halt, disease progression, and treatment discontinuation because of adverse events is common. Fibrotic diseases such as these can be mediated by lysophosphatidic acid (LPA), which signals via six LPA receptors (LPA1–6). Signalling via LPA1 appears to be fundamental in the pathogenesis of fibrotic diseases. BMS-986278, a second-generation LPA1 antagonist, is currently in phase 2 development as a therapy for IPF and PF-ILD.Methods and analysisThis phase 2, randomised, double-blind, placebo-controlled, parallel-group, international trial will include adults with IPF or PF-ILD. The trial will consist of a 42-day screening period, a 26-week placebo-controlled treatment period, an optional 26-week active-treatment extension period, and a 28-day post-treatment follow-up. Patients in both the IPF (n=240) and PF-ILD (n=120) cohorts will be randomised 1:1:1 to receive 30 mg or 60 mg BMS-986278, or placebo, administered orally two times per day for 26 weeks in the placebo-controlled treatment period. The primary endpoint is rate of change in per cent predicted forced vital capacity from baseline to week 26 in the IPF cohort.Ethics and disseminationThis study will be conducted in accordance with Good Clinical Practice guidelines, Declaration of Helsinki principles, and local ethical and legal requirements. Results will be reported in a peer-reviewed publication.Trial registration numberNCT04308681.


Cancers ◽  
2021 ◽  
Vol 13 (23) ◽  
pp. 5958
Author(s):  
Susanne Kossatz ◽  
Ambros Johannes Beer ◽  
Johannes Notni

For almost the entire period of the last two decades, translational research in the area of integrin-targeting radiopharmaceuticals was strongly focused on the subtype αvβ3, owing to its expression on endothelial cells and its well-established role as a biomarker for, and promoter of, angiogenesis. Despite a large number of translated tracers and clinical studies, a clinical value of αvβ3-integrin imaging could not be defined yet. The focus of research has, thus, been moving slowly but steadily towards other integrin subtypes which are involved in a large variety of tumorigenic pathways. Peptidic and non-peptidic radioligands for the integrins α5β1, αvβ6, αvβ8, α6β1, α6β4, α3β1, α4β1, and αMβ2 were first synthesized and characterized preclinically. Some of these compounds, targeting the subtypes αvβ6, αvβ8, and α6β1/β4, were subsequently translated into humans during the last few years. αvβ6-Integrin has arguably attracted most attention because it is expressed by some of the cancers with the worst prognosis (above all, pancreatic ductal adenocarcinoma), which substantiates a clinical need for the respective theranostic agents. The receptor furthermore represents a biomarker for malignancy and invasiveness of carcinomas, as well as for fibrotic diseases, such as idiopathic pulmonary fibrosis (IPF), and probably even for Sars-CoV-2 (COVID-19) related syndromes. Accordingly, the largest number of recent first-in-human applications has been reported for radiolabeled compounds targeting αvβ6-integrin. The results indicate a substantial clinical value, which might lead to a paradigm change and trigger the replacement of αvβ3 by αvβ6 as the most popular integrin in theranostics.


2021 ◽  
Vol 22 (21) ◽  
pp. 11607
Author(s):  
Wojciech Michał Ciszewski ◽  
Marta Ewelina Wawro ◽  
Izabela Sacewicz-Hofman ◽  
Katarzyna Sobierajska

Chronic inflammation promotes endothelial plasticity, leading to the development of several diseases, including fibrosis and cancer in numerous organs. The basis of those processes is a phenomenon called the endothelial–mesenchymal transition (EndMT), which results in the delamination of tightly connected endothelial cells that acquire a mesenchymal phenotype. EndMT-derived cells, known as the myofibroblasts or cancer-associated fibroblasts (CAFs), are characterized by the loss of cell–cell junctions, loss of endothelial markers, and gain in mesenchymal ones. As a result, the endothelium ceases its primary ability to maintain patent and functional capillaries and induce new blood vessels. At the same time, it acquires the migration and invasion potential typical of mesenchymal cells. The observed modulation of cell shape, increasedcell movement, and invasion abilities are connected with cytoskeleton reorganization. This paper focuses on the review of current knowledge about the molecular pathways involved in the modulation of each cytoskeleton element (microfilaments, microtubule, and intermediate filaments) during EndMT and their role as the potential targets for cancer and fibrosis treatment.


Sign in / Sign up

Export Citation Format

Share Document